SU (N)-EINSTEIN-YANG-MILLS FIELDS WITH SPHERICAL-SYMMETRY

被引:34
作者
KUNZLE, HP
机构
[1] Department of Mathematics, University of Alberta, Edmonton
关键词
D O I
10.1088/0264-9381/8/12/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For all possible actions of SU(2) on SU(n)-principal bundles over spacetime time corresponding reduced Einstein-Yang-Mills equations are derived. These actions are classified by sets of n integers with sum zero. Only the case where some of these integers have a difference of two leads to interesting equations that may have solutions generalizing the discrete sequence of regular solutions found by Bartnik and McKinnon. For actions when no two integers differ by two the underlying spacetime metric is necessarily Reissner-Nordstrom.
引用
收藏
页码:2283 / 2297
页数:15
相关论文
共 25 条
[1]   MAGNETIC-MONOPOLE SOLUTION OF NON-ABELIAN GAUGE THEORY IN CURVED SPACETIME [J].
BAIS, FA ;
RUSSELL, RJ .
PHYSICAL REVIEW D, 1975, 11 (10) :2692-2695
[2]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[3]   COLORED BLACK-HOLES [J].
BIZON, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2844-2847
[4]  
BIZON P, 1991, STABILITY EINSTEIN Y
[5]   GRAVITATING T HOOFT MONOPOLES [J].
CHO, YM ;
FREUND, PGO .
PHYSICAL REVIEW D, 1975, 12 (06) :1588-1589
[6]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR
[7]   NONEXISTENCE OF REGULAR MONOPOLES AND DYONS IN THE SU(2) EINSTEIN-YANG-MILLS THEORY [J].
ERSHOV, AA ;
GALTSOV, DV .
PHYSICS LETTERS A, 1990, 150 (3-4) :159-162
[8]   SPACE-TIME SYMMETRIES IN GAUGE-THEORIES [J].
FORGACS, P ;
MANTON, NS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 72 (01) :15-35
[9]  
GU CH, 1981, MATH PHYS, V79, P75
[10]   GROUP-ACTIONS ON PRINCIPAL BUNDLES AND INVARIANCE CONDITIONS FOR GAUGE-FIELDS [J].
HARNAD, J ;
SHNIDER, S ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2719-2724