MEAN FIELD ANNEALING - A FORMALISM FOR CONSTRUCTING GNC-LIKE ALGORITHMS

被引:46
作者
BILBRO, GL [1 ]
SNYDER, WE [1 ]
GARNIER, SJ [1 ]
GAULT, JW [1 ]
机构
[1] WAKE FOREST UNIV,BOWMAN GRAY SCH MED,DEPT RADIOL,WINSTON SALEM,NC 27103
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1992年 / 3卷 / 01期
关键词
SIMULATED ANNEALING; MEAN FIELD APPROXIMATION; GRADUATED NONCONVEXITY;
D O I
10.1109/72.105426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We approach optimization problems using mean field annealing (MFA), which is a deterministic approximation, using mean field theory and based on Peierls's inequality, to simulated annealing. The MFA mathematics are applied to three different objective function examples. In each case, MFA produces a minimization algorithm that is a type of graduated nonconvexity. When applied to the "weak membrane" objective, MFA results in an algorithm qualitatively identical to the published GNC algorithm. One of the examples, MFA applied to a piecewise-constant objective function, is then compared experimentally with the corresponding GNC weak-membrane algorithm. The mathematics of MFA are shown to provide a powerful and general tool for deriving optimization algorithms.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 16 条
[1]  
BILBRO G, IN PRESS IEEE T SYST
[2]  
BILBRO G, 1988, AUG IEEE INT S INT C
[3]  
BILBRO G, 1989, ADV NEURAL INFORMATI
[4]  
BILBRO G, 1990, J NEURAL NETWORK FAL
[5]  
BILBRO G, 1991, J OPT SOC AM A, V8
[6]  
BILBRO GL, 1989, ADV NEURAL NETWORK I
[7]  
BLAKE A., 1987, VISUAL RECONSTRUCTIO
[8]  
BLAKE A, 1989, IEEE T PATTERN ANAL, V11
[9]  
GEIGER D, 1989, AI114 MIT MEM
[10]  
Geman S., 1984, IEEE T PATTERN ANAL, V6