THE 2-DIMENSIONAL HARMONIC-OSCILLATOR INTERACTING WITH A WEDGE

被引:13
作者
CHENG, BK
机构
[1] Dept. de Fisica, Univ. Federal Do Parana, Curitiba
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 24期
关键词
D O I
10.1088/0305-4470/23/24/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact propagator of our dynamic system is presented and confirmed by expanding it in terms of the energy eigenfunctions and eigenvalues, which agree with those obtained from the corresponding Schrodinger equation. For the case of a rational wedge the propagator can be expressed as a sum over `classical paths', but with the modified Van-Vleck formula. We also evaluate the density matrix and the partition function.
引用
收藏
页码:5807 / 5814
页数:8
相关论文
共 17 条
[1]   THE QUASI-CLASSICAL PROPAGATOR OF A QUANTUM PARTICLE IN A UNIFORM-FIELD IN A HALF-SPACE [J].
AKHUNDOVA, EA ;
DODONOV, VV ;
MANKO, VI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (03) :467-477
[2]  
[Anonymous], 1996, TABLES INTEGRALS SER
[3]  
CARPIOBERNIDO MV, 1989, PATH INTEGRALS MEV M, P442
[4]  
CHENG BK, 1989, PATH INTEGRALS MEV M, P370
[5]   EXACT PROPAGATOR FOR MOTION CONFINED TO A SECTOR [J].
CRANDALL, RE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03) :513-519
[6]  
DEWITTMORETTE C, 1986, FOUND PHYS, V16, P311, DOI 10.1007/BF01882691
[7]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[8]  
FLUGGE S, 1974, PRACTICAL QUANTUM ME, P108
[9]   EXPLICIT TIME-DEPENDENT SCHRODINGER PROPAGATORS [J].
GAVEAU, B ;
SCHULMAN, LS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :1833-1846
[10]  
INOMATA A, 1989, PATH INTEGRALS MEV M, P112