MANY HARD EXAMPLES FOR RESOLUTION

被引:240
作者
CHVATAL, V [1 ]
SZEMEREDI, E [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1361 BUDAPEST 5,HUNGARY
关键词
Mathematical Techniques - Graph Theory - Probability - Random Processes;
D O I
10.1145/48014.48016
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is proved that for every choice of positive integers c and k such that k ≥ 3 and c2-k ≥ 0.7, there is a positive number Ε such that, with probability tending to 1 as n tends to ∞, a randomly chosen family of cn clauses of size k over n variables is unsatisfiable, but every resolution proof of its unsatisfiability must generate at least (1 + Ε)n clauses. The proof makes use of random hypergraphs.
引用
收藏
页码:759 / 768
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1971, STOC 71, DOI DOI 10.1145/800157.805047
[2]  
Bibel W., 1987, AUTOMATED THEOREM PR, V2nd
[3]  
BLAKE A, 1937, THESIS U CHICAGO CHI
[4]  
Chvatal V., 1984, Annals of Operations Research, V1, P171, DOI 10.1007/BF01874387
[5]   A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY [J].
DAVIS, M ;
PUTNAM, H .
JOURNAL OF THE ACM, 1960, 7 (03) :201-215
[6]  
Galil Z., 1977, Theoretical Computer Science, V4, P23, DOI 10.1016/0304-3975(77)90054-8
[7]   THE INTRACTABILITY OF RESOLUTION [J].
HAKEN, A .
THEORETICAL COMPUTER SCIENCE, 1985, 39 (2-3) :297-308
[8]  
Hall P., 1935, J LONDON MATH SOC, V1, P26, DOI [10.1112/jlms/s1-10.37.26, DOI 10.1112/JLMS/S1-10.37.26]
[9]  
HOFFMAN AJ, 1956, ANN MATH STUD, V38, P199
[10]   Transformations in calculus. [J].
Lowenheim, L .
MATHEMATISCHE ANNALEN, 1913, 73 :245-272