LEVEL-SPACING DISTRIBUTIONS AND THE AIRY KERNEL

被引:85
作者
TRACY, CA
WIDOM, H
机构
[1] UNIV CALIF DAVIS, INST THEORET DYNAM, DAVIS, CA 95616 USA
[2] UNIV CALIF SANTA CRUZ, DEPT MATH, SANTA CRUZ, CA 95064 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(93)91114-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Scaling level-spacing distribution functions in the ''bulk of the spectrum'' in random matrix models of N x N hermitian matrices and then going to the limit N --> infinity, leads to the Fredholm determinant of the sine kernel sin pi(x - y)/pi(x - y). Similarly a double scaling limit at the ''edge of the spectrum'' leads to the Airy kernel [Ai(x)Ai'(y) - Ai'(x)Ai(y)]/(x - y). We announce analogies for this Airy kernel of the following properties of the sine kernel: the completely integrable system of PDE's found by Jimbo, Miwa, Mori and Sato; the expression, in the case of a single interval, of the Fredholm determinant in terms of a Painleve transcendent; the existence of a commuting differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general n, of the probability that an interval contains precisely n eigenvalues.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 22 条