CRITICAL-POINT AND COEXISTENCE-CURVE PROPERTIES OF THE LENNARD-JONES FLUID - A FINITE-SIZE-SCALING STUDY

被引:429
作者
WILDING, NB
机构
[1] Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Monte Carlo simulations within the grand canonical ensemble are used to explore the Liquid-vapor coexistence-curve and critical-point properties of the Lennard-Jones fluid. Attention is focused on the joint distribution of density and energy fluctuations at coexistence. In the vicinity of the critical point, this distribution is analyzed using mixed-field finite-size scaling techniques aided by histogram reweighting methods. The analysis yields highly accurate estimates of the critical-point parameters as well as exposing the size and character of corrections to scaling. In the subcritical coexistence region the density distribution is obtained by combining multicanonical simulations with histogram reweighting techniques. It is demonstrated that this procedure permits an efficient and accurate mapping of the coexistence curve, even deep within the two-phase region.
引用
收藏
页码:602 / 611
页数:10
相关论文
共 63 条
[1]   CALCULATING LOW-TEMPERATURE VAPOR LINE BY MONTE-CARLO [J].
ADAMS, DJ .
MOLECULAR PHYSICS, 1976, 32 (03) :647-657
[2]   GRAND CANONICAL ENSEMBLE MONTE-CARLO FOR A LENNARD-JONES FLUID [J].
ADAMS, DJ .
MOLECULAR PHYSICS, 1975, 29 (01) :307-311
[3]   CALCULATING THE HIGH-TEMPERATURE VAPOR LINE BY MONTE-CARLO [J].
ADAMS, DJ .
MOLECULAR PHYSICS, 1979, 37 (01) :211-221
[4]  
Allen L., 1993, AIAA933545CP
[5]  
Allen M.P., 1987, COMPUTER SIMULATION
[6]  
[Anonymous], 1992, COMPUTATIONAL METHOD, DOI [10.1007/3-540-55997-3_31, DOI 10.1007/3-540-55997-3_31]
[7]  
BERG B, COMMUNICATION
[8]   PROPERTIES OF INTERFACES IN THE 2 AND 3-DIMENSIONAL ISING-MODEL [J].
BERG, BA ;
HANSMANN, U ;
NEUHAUS, T .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (02) :229-239
[9]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[10]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140