CFTR IN CALU-3 HUMAN AIRWAY CELLS - CHANNEL PROPERTIES AND ROLE IN CAMP-ACTIVATED CL- CONDUCTANCE

被引:149
作者
HAWS, C
FINKBEINER, WE
WIDDICOMBE, JH
WINE, JJ
机构
[1] STANFORD UNIV, CYST FIBROSIS RES LAB, STANFORD, CA 94305 USA
[2] UNIV CALIF SAN FRANCISCO, CARDIOVASC RES INST, SAN FRANCISCO, CA 94143 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY | 1994年 / 266卷 / 05期
关键词
CYSTIC FIBROSIS; PATCH CLAMP; EPITHELIA; SUBMUCOSAL GLAND; CELL CULTURE;
D O I
10.1152/ajplung.1994.266.5.L502
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Calu-3, a cell line derived from a lung adenocarcinoma, forms tight junctions, expresses cystic fibrosis transmembrane conductance regulator (CFTR), and secretes Cl- in response to adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents. Anion conductance of Calu-3 cells was assessed with isotopic flux and patch-clamp methods at 22 degrees C. Iodide efflux was increased by cAMP-elevating agents and brief trypsin treatment. A 7.1 +/- 0.4-pS voltage-independent Cl- channel with linear current-voltage relation was the most common channel observed in cell-attached recordings and was identified as CFTR on the basis of shared features with recombinant CFTR. In unstimulated cells, the mean minimum number of active CFTR channels per patch was 1 +/- 1 (n = 12), increasing to 6 +/- 8 (n = 40) after stimulation with cAMP-elevating agents or after brief trypsin treatment. Channel closure after excision was biexponential with tau(1) approximate to 4 s and tau(2) approximate to 79 s; typically channels were open continuously until closing permanently. In 11 of 12 excised patches, channels were reactivated by exposure to cAMP-dependent protein kinase (PKA) plus ATP. Efficacy of reactivation was inversely related to the duration from excision to addition of PKA. Channels were blocked by 20-40 mu M 5-nitro-2-(3-phenylpropylamino)benzoate on cytosolic but not external side. Active CFTR channels were recorded in 83% of total patches. Other types of Cl- channels were observed in 5 of 52 (10%) cell-attached patches and in 17 of 34 (50%) excised patches, including an outwardly rectifying channel in 2 patches. CFTR channels are the predominant pathway for cAMP-stimulated Cl- conductance in Calu-3 cells; the long open times in the absence of ATP are not explained by present models of CFTR activation.
引用
收藏
页码:L502 / L512
页数:11
相关论文
共 37 条
[1]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[2]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[3]   CHLORIDE CHANNELS IN THE APICAL MEMBRANE OF NORMAL AND CYSTIC-FIBROSIS AIRWAY AND INTESTINAL EPITHELIA [J].
ANDERSON, MP ;
SHEPPARD, DN ;
BERGER, HA ;
WELSH, MJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 263 (01) :L1-L14
[4]  
BASBAUM CB, 1990, ANNU REV PHYSIOL, V52, P97
[5]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[6]   CHARACTERIZATION OF CAMP-DEPENDENT CFTR-CHLORIDE CHANNELS IN HUMAN TRACHEAL GLAND-CELLS [J].
BECQ, F ;
MERTEN, MD ;
VOELCKEL, MA ;
GOLA, M ;
FIGARELLA, C .
FEBS LETTERS, 1993, 321 (01) :73-78
[7]   LOW-CONDUCTANCE CHLORIDE CHANNELS IN IEC-6 AND CF NASAL CELLS EXPRESSING CFTR [J].
BIJMAN, J ;
DALEMANS, W ;
KANSEN, M ;
KEULEMANS, J ;
VERBEEK, E ;
HOOGEVEEN, A ;
DEJONGE, H ;
WILKE, M ;
DREYER, D ;
LECOCQ, JP ;
PAVIRANI, A ;
SCHOLTE, B .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 264 (03) :L229-L235
[8]   EVIDENCE FOR REDUCED CL- AND INCREASED NA+ PERMEABILITY IN CYSTIC-FIBROSIS HUMAN PRIMARY-CELL CULTURES [J].
BOUCHER, RC ;
COTTON, CU ;
GATZY, JT ;
KNOWLES, MR ;
YANKASKAS, JR .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 405 :77-103
[9]   G-PROTEINS - THE TARGET SETS THE TEMPO [J].
BOURNE, HR ;
STRYER, L .
NATURE, 1992, 358 (6387) :541-543
[10]   SMALL CONDUCTANCE CHLORIDE CHANNELS IN THE APICAL MEMBRANE OF THYROID-CELLS [J].
CHAMPIGNY, G ;
VERRIER, B ;
GERARD, C ;
MAUCHAMP, J ;
LAZDUNSKI, M .
FEBS LETTERS, 1990, 259 (02) :263-268