A GENERAL FORMULA FOR CHANNEL CAPACITY

被引:507
作者
VERDU, S [1 ]
HAN, TS [1 ]
机构
[1] UNIV ELECTROCOMMUN TOKYO, GRAD SCH INFORMAT SYST, TOKYO 182, JAPAN
基金
美国国家科学基金会;
关键词
SHANNON THEORY; CHANNEL CAPACITY; CHANNEL CODING THEOREM; CHANNELS WITH MEMORY; STRONG CONVERSE;
D O I
10.1109/18.335960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A formula for the capacity of arbitrary single-user channels without feedback (not necessarily information stable, stationary, etc.) is proved. Capacity is shown to equal the supremum, over all input processes, of the input-output information rate defined as the liminf in probability of the normalized information density. The key to this result is a new converse approach based on a simple new lower bound on the error probability of m-ary hypothesis tests among equiprobable hypotheses. A necessary and sufficient condition for the validity of the strong converse is given, as well as general expressions for is-an-element-of-capacity.
引用
收藏
页码:1147 / 1157
页数:11
相关论文
共 27 条
[1]   WEAK CAPACITY OF AVERAGED CHANNELS [J].
AHLSWEDE, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 11 (01) :61-&
[2]  
[Anonymous], 2006, ELEM INF THEORY
[3]   BROADCAST CHANNELS [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (01) :2-+
[4]  
CSISZAR I, 1981, INFORMATION THEORY C
[5]  
Dobrushin R, 1959, AMS TRANSL, V33, P323
[6]   A NEW BASIC THEOREM OF INFORMATION THEORY [J].
FEINSTEIN, A .
IRE TRANSACTIONS ON INFORMATION THEORY, 1954, (04) :2-22
[7]   BLOCK CODING FOR DISCRETE STATIONARY DBAR-CONTINUOUS NOISY CHANNELS [J].
GRAY, RM ;
ORNSTEIN, DS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (03) :292-306
[8]  
GRAY RM, 1977, ERGODIC INF THEORY
[9]  
HAN TS, 1993, IEEE T INFORM THEORY, V39, P752, DOI 10.1109/18.256486
[10]   RANDOM GEOMETRIC SERIES AND INTERSYMBOL INTERFERENCE [J].
HILL, FS ;
BLANCO, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) :326-335