STABILITY ANALYSIS OF CRACK-PROPAGATION

被引:10
作者
HERRMANN, HJ [1 ]
KERTESZ, J [1 ]
机构
[1] UNIV COLOGNE, INST THEORET PHYS, W-5000 COLOGNE 41, GERMANY
关键词
D O I
10.1016/0378-4371(91)90018-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of a crack in an isotropic elastic medium is treated as a moving boundary problem. Linear stability analysis shows that for the stretched membrane with a central, initially circular hole all modes are stable. On the other hand all modes are unstable for a two-dimensional arrangement where the crack is induced by pressure in a central hole.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 13 条
[1]  
BALL R, 1990, PHYS REV LETT, V65, P1764
[2]   STEADY-STATE PROPAGATION OF A CRACK IN A VISCOELASTIC STRIP [J].
BARBER, M ;
DONLEY, J ;
LANGER, JS .
PHYSICAL REVIEW A, 1989, 40 (01) :366-376
[3]  
FUNG YC, 1965, F SOLID MECHANICS
[4]   FRACTAL SHAPES OF DETERMINISTIC CRACKS [J].
HERRMANN, HJ ;
KERTESZ, J ;
DE ARCANGELIS, L .
EUROPHYSICS LETTERS, 1989, 10 (02) :147-152
[5]  
Herrmann HJ, 1990, STATISTICAL MODELS F
[6]  
Herrmann HJ, 1988, NATO ASI SER, V157, P149
[7]  
KERTESZ J, 1990, STATISTICAL MODELS F
[8]   PATTERN SELECTION IN FINGERED GROWTH PHENOMENA [J].
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
ADVANCES IN PHYSICS, 1988, 37 (03) :255-339
[9]  
Lifshitz E. M., 1960, ELECTRODYNAMICS CONT, P130
[10]   MORPHOLOGICAL STABILITY OF A PARTICLE GROWING BY DIFFUSION OR HEAT FLOW [J].
MULLINS, WW ;
SEKERKA, RF .
JOURNAL OF APPLIED PHYSICS, 1963, 34 (02) :323-&