SPATIAL GEOMETRY OF THE ELECTRIC-FIELD REPRESENTATION OF NON-ABELIAN GAUGE-THEORIES

被引:42
作者
BAUER, M
FREEDMAN, DZ
HAAGENSEN, PE
机构
[1] UNIV BARCELONA, FAC FIS, DEPT ESTRUCTURA & CONSTITUENTS MAT, E-08028 BARCELONA, SPAIN
[2] SERV PHYS THEOR SACLAY, F-91191 GIF SUR YVETTE, FRANCE
[3] MIT, DEPT MATH, CAMBRIDGE, MA 02139 USA
[4] MIT, CTR THEORET PHYS, CAMBRIDGE, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)90196-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A unitary transformation Psi [E] = exp (i Omega[E]/g)F[E] is used to simplify the Gauss law constraint of non-abelian gauge theories in the electric field representation. This leads to an unexpected geometrization because omega(i)(a) equivalent to -delta Omega[E]/delta E(ai) transforms as a (composite) connection. The geometric information in omega(i)(a) is transferred to a gauge invariant spatial connection Gamma(jk)(i) and torsion by a suitable choice of basis vectors for the adjoint representation which are constructed from the electric field E(ai). A metric is also constructed from E(ai). For gauge group SU(2), the spatial geometry is the standard Riemannian geometry of a 3-manifold, and for SU(3) it is a metric preserving geometry with both conventional and unconventional torsion. The transformed Hamiltonian is local. For a broad class of physical states, it can be expressed entirely in terms of spatial geometric, gauge invariant variables.
引用
收藏
页码:147 / 168
页数:22
相关论文
共 25 条
[1]  
CANGEMI D, 1994, MIT CPT2278 PREPR
[2]  
FREEDMAN DZ, CERNTH701093 PREPR
[3]  
FREEDMAN DZ, IN PRESS PHYS LETT B
[4]   UNCONSTRAINED TEMPORAL GAUGE FOR YANG-MILLS THEORY [J].
GOLDSTONE, J ;
JACKIW, R .
PHYSICS LETTERS B, 1978, 74 (1-2) :81-84
[5]  
HAAGENSEN PE, IN PRES
[6]   FIELD-STRENGTH FORMULATION OF QUANTUM CHROMODYNAMICS [J].
HALPERN, MB .
PHYSICAL REVIEW D, 1977, 16 (06) :1798-1801
[7]   GAUGE-INVARIANT FORMULATION OF SELF-DUAL SECTOR [J].
HALPERN, MB .
PHYSICAL REVIEW D, 1977, 16 (12) :3515-3519
[8]   FIELD-STRENGTH AND DUAL VARIABLE FORMULATIONS OF GAUGE THEORY [J].
HALPERN, MB .
PHYSICAL REVIEW D, 1979, 19 (02) :517-530
[9]   DERIVATION OF ASHTEKAR VARIABLES FROM TETRAD GRAVITY [J].
HENNEAUX, M ;
NELSON, JE ;
SCHOMBLOND, C .
PHYSICAL REVIEW D, 1989, 39 (02) :434-437
[10]   GAUGE CONDITIONS FOR THE YANG-MILLS FIELD [J].
IZERGIN, AG ;
KOREPIN, VF ;
SEMENOVTYANSHANSKII, MA ;
FADDEEV, LD .
THEORETICAL AND MATHEMATICAL PHYSICS, 1979, 38 (01) :1-9