We studied the effects of high frequency tetanic stimulation of the striatum on the KCl (20 mM)-evoked dopamine release in rat striatal slices. The KCl-evoked dopamine release was potentiated by high frequency tetanic stimulation (10-20 Hz) of the striatum including the corticostriatal fibers, and this potentiation was observed until 3 h after high frequency tetanic stimulation. Potentiation of dopamine release after high frequency tetanic stimulation was induced not only by KCl but also by glutamate in Mg2+-free medium, N-methyl-D-aspartate in Mg2+-free medium, and by DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. 2-amino-5-phosphovalerate, 3-[(+/-)-2-carboxypiperazine-4-yl]-propy-1-phosphonate or dibenzocycloheptaneimine, N-methyl-D-aspartate receptor inhibitors, abolished enhancement by tetanus, whereas, 6,7-dinitroquinoxaline-2,3-dione, an antagonist of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ionotropic receptors, or L-2-amino-4-phosphonobutyrate, an antagonist of glutamate metabotropic receptors, showed no effect. Moreover, pretreatment with glutamate or N-methyl-D-aspartate in the absence of Mg2+ also facilitated dopamine release evoked by KCl concentrations. When extracellular Ca2+ was removed from the medium during pretreatment, potentiation by glutamate disappeared. We conclude that activation of N-methyl-D-aspartate receptors on dopaminergic nerve terminals in the striatum produces the long-term changes in efficacy of the response to KCl or glutamatergic agents. That is, plastical phenomena could exist at presynaptic levels between glutamatergic neurons and dopaminergic neurons in striatum.