FRACTIONAL-PROGRAMMING BY LOWER SUBDIFFERENTIABILITY TECHNIQUES

被引:8
作者
BONCOMPTE, M [1 ]
MARTINEZLEGAZ, JE [1 ]
机构
[1] UNIV BARCELONA,DEPT MATEMAT APLICADA & ANALISIS,BARCELONA 7,SPAIN
关键词
FRACTIONAL PROGRAMMING; LOWER SUBDIFFERENTIABLE FUNCTIONS; DUALITY; OPTIMALITY CONDITIONS; CUTTING PLANES;
D O I
10.1007/BF00939937
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The notion of lower subdifferentiability is applied to the analysis of convex fractional programming problems. In particular, duality results and optimality conditions are presented, and the applicability of a cutting-plane algorithm using lower subgradients is discussed. These methods are useful also in generalized fractional programming, where, in the linear case, the performance of the cutting-plane algorithm is compared with that of the most efficient version of the Dinkelbach method, which is based on the solution of a parametric linear programming problem.
引用
收藏
页码:95 / 116
页数:22
相关论文
共 23 条
[1]   BEST RATIONAL APPROXIMATION AND STRICT QUASI-CONVEXITY [J].
BARRODALE, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (01) :8-12
[2]  
Borde J., 1987, Zeitschrift fur Operations Research, Serie A (Theorie), V31, P31, DOI 10.1007/BF01258607
[3]  
Craven B. D., 1988, FRACTIONAL PROGRAMMI
[4]  
Crouzeix J. P., 1977, THESIS U CLERMONT FE
[6]  
CROUZEIX JP, 1981, GENERALIZED CONCAVIT, P207
[7]   CALCULATING SURROGATE CONSTRAINTS [J].
DYER, ME .
MATHEMATICAL PROGRAMMING, 1980, 19 (03) :255-278
[8]   GENERALIZED FRACTIONAL-PROGRAMMING - ALGORITHMS AND NUMERICAL EXPERIMENTATION [J].
FERLAND, JA ;
POTVIN, JY .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (01) :92-101
[9]  
Greenberg HP., 1973, CAHIERS CTR ETUDES R, V15, P437
[10]  
LASDON L, 1970, OPTIMIZATION THEORY