ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS

被引:139
作者
ISERLES, A
KOCH, PE
NORSETT, SP
SANZSERNA, JM
机构
[1] NORWEGIAN INST TECHNOL,DIV MATH SCI,N-7034 TRONDHEIM,NORWAY
[2] UNIV VALLADOLID,DEPT APPL MATH & COMPUTAT,VALLADOLID,SPAIN
关键词
D O I
10.1016/0021-9045(91)90100-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with polynomials {pn(λ)} that are orthogonal with respect to the Sobolev inner product 〈 f, g 〉λ = ∝ fg dθ{symbol} + λ ∝ f′g′ dψ, where λ is a non-negative constant. We show that if the Borel measures dθ{symbol} and dψ obey a specific condition then the Pn(λ)'s can be expanded in the polynomials orthogonal with respect to dθ{symbol} in such a manner that, subject to correct normalization, the expansion coefficients, except for the last, are independent of n and are themselves orthogonal polynomials in λ. We explore several examples and demonstrate how our theory can be used for efficient evaluation of Sobolev-Fourier Coefficients. © 1991.
引用
收藏
页码:151 / 175
页数:25
相关论文
共 23 条
[1]  
ALTHAMMER P, 1962, J REINE ANGEW MATH, V211, P192
[2]  
ASKEY R, 1984, MEM AM MATH SOC, V319
[3]  
Bavinck H., 1989, APPL ANAL, V33, P103
[4]  
BRENNER J, 1969, THESIS TH STUTTGART
[5]  
BRENNER J, 1972, CONSTRUCTIVE THEORY
[6]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[7]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[8]  
COHEN EA, 1975, SIAM J MATH ANAL, V6, P105, DOI 10.1137/0506011
[9]  
GAUTSCHI W, 1981, MATH COMPUT, V36, P547, DOI 10.1090/S0025-5718-1981-0606512-6
[10]  
GROBNER W, 1965, FUNJKTIONALANALYSIS