COVARIANT DESCRIPTION OF THE CANONICAL FORMALISM

被引:28
作者
BARNICH, G
HENNEAUX, M
SCHOMBLOND, C
机构
[1] Faculté des Sciences, Université Libre de Bruxelles, B-1050 Bruxelles, Campus Plaine
[2] Centro de Estudios Cientificos de Santiago, Santiago 9
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 04期
关键词
D O I
10.1103/PhysRevD.44.R939
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a gauge theory, one can define the Poisson brackets of gauge-invariant functions ("observables") by three different methods. The first method is based on the constrained Hamiltonian reformulation of the theory. The other two methods, namely, the Peierls method and the covariant symplectic approach, deal directly with the Lagrangian. It is explicitly shown that these three methods are equivalent for an arbitrary gauge theory. The equivalence proof relies on the invariance of the Poisson structure among the observables under the introduction of auxiliary fields.
引用
收藏
页码:R939 / R941
页数:3
相关论文
共 13 条
[1]  
ASHTEKAR A, 1990, ANAL GEOMETRY MECHAN
[2]   DIRAC BRACKET TRANSFORMATIONS IN PHASE SPACE [J].
BERGMANN, PG ;
GOLDBERG, I .
PHYSICAL REVIEW, 1955, 98 (02) :531-538
[3]  
DEWITT B, 1964, RELATIVITY GROUPS TO
[4]   PRESYMPLECTIC MANIFOLDS AND DIRAC-BERGMANN THEORY OF CONSTRAINTS [J].
GOTAY, MJ ;
NESTER, JM ;
HINDS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) :2388-2399
[5]   GAUGE-INVARIANCE AND DEGREE OF FREEDOM COUNT [J].
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
NUCLEAR PHYSICS B, 1990, 332 (01) :169-188
[6]   ELIMINATION OF THE AUXILIARY FIELDS IN THE ANTIFIELD FORMALISM [J].
HENNEAUX, M .
PHYSICS LETTERS B, 1990, 238 (2-4) :299-304
[7]  
HENNEAUX M, IN PRESS QUANTIZATIO
[8]  
LICHNEROWICZ A, 1975, CR ACAD SCI A MATH, V280, P523
[9]   THE COMMUTATION LAWS OF RELATIVISTIC FIELD THEORY [J].
PEIERLS, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 214 (1117) :143-157
[10]   INTERACTING FIELD-THEORY OF OPEN SUPERSTRINGS [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 276 (02) :291-324