ESTIMATES FOR SOME KAKEYA-TYPE MAXIMAL OPERATORS

被引:8
作者
BARRIONUEVO, J [1 ]
机构
[1] UNIV ROCHESTER,DEPT MATH,ROCHESTER,NY 14627
关键词
D O I
10.2307/2154399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an abstract version of a theorem of Kolmogorov-Seliverstov-Paley to obtain sharp L 2 estimates for maximal operators of the form: M(B) f(x) = sup(x is-an-element-of S is-an-element-of B) 1//S/ integral-\f(x - y)\dy/S. We consider the cases where B is the class of all rectangles in R(n) congruent to some dilate of [0, 1]n-1 x [0, N-1] ; the class congruent to dilates of [0, N-1]n-1 x [0, 1]; and, in R2, the class of all rectangles with longest side parallel to a particular countable set of directions that include the lacunary and the uniformly distributed cases.
引用
收藏
页码:667 / 682
页数:16
相关论文
共 19 条
  • [1] BARRIONUEVO J, 1990, THESIS U ROCHESTER
  • [2] CHRIST M, 1986, DUKE MATH J, V53
  • [3] CORDOBA A, 1977, AM J MATH, V99
  • [4] CORDOBA A, 1979, P S PURE MATH, V38, P29
  • [5] CORDOBA A, 1977, P NAT ACAD SCI US, V74
  • [6] CORDOBA A, 1982, ANN I FOURIER GRENOB, V32
  • [7] CORDOBA A, 1977, ANN MATH, V105
  • [8] FEFFERMAN CA, 1973, ISRAEL J MATH, V15
  • [9] HA YH, 1989, P AM MATH SOC, V105, P401
  • [10] Hormander L., 1983, ANAL LINEAR DIFFEREN, V1