LIMIT-THEOREMS FOR RANDOM-VARIABLES WITH VALUES IN SPACES LP (2LESS-THAN-OR-EQUAL-TO P LESS-THAN INFINITY)

被引:32
作者
PISIER, G [1 ]
ZINN, J [1 ]
机构
[1] UNIV MASSACHUSETTS,DEPT MATH & STAT,AMHERST,MA 01002
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1978年 / 41卷 / 04期
关键词
D O I
10.1007/BF00533600
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that whenever B is an infinite dimensional Banach space, there exists a B-valued random variable X failing the Central Limit Theorem (in short the CLT) and such that IE∥X∥2=∞ but yet satisfying the Law of the Iterated Logarithm (in short the LIL). We obtain a new sufficient condition for the LIL in Hilbert space and we characterize the random variables with values in lp or Lp with 2<p<∞ which satisfy the CLT. As an application we show that in lp (2<p<∞) the stochastic boundedness of the weighed partial sums does not imply the CLT. © 1978 Springer-Verlag.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 22 条
[1]  
ALDOUS D, UNPUBLISHED
[2]   STUDY OF FOURIER COEFFICIENTS OF LP(G) FUNCTIONS [J].
BONAMI, A .
ANNALES DE L INSTITUT FOURIER, 1970, 20 (02) :335-&
[3]  
CRAWFORD J, 1976, THESIS U WISCONSIN
[4]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[5]  
Dvoretzky A., 1961, P INT S LIN SPAC JER, P123
[6]   A LIMIT THEOREM FOR RANDOM VARIABLES WITH INFINITE MOMENTS [J].
FELLER, W .
AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) :257-262
[7]  
FIGIEL T, 1976, COMPOS MATH, V33, P297
[8]  
HARTMAN S, 1941, AM J MATH, V43, P169
[9]   LAW OF LARGE NUMBERS AND CENTRAL LIMIT-THEOREM IN BANACH-SPACES [J].
HOFFMANNJORGENSEN, J ;
PISIER, G .
ANNALS OF PROBABILITY, 1976, 4 (04) :587-599
[10]  
JAIN NC, 1976, P AM MATH SOC PROBAB