MINIMUM CROSS-ENTROPY ANALYSIS WITH ENTROPY-TYPE CONSTRAINTS

被引:4
作者
FANG, SC
PETERSON, EL
RAJASEKERA, JR
机构
[1] N CAROLINA STATE UNIV, RALEIGH, NC 27695 USA
[2] AT&T BELL LABS, ENGN RES CTR, PRINCETON, NJ 08540 USA
关键词
ENTROPY OPTIMIZATION; INFORMATION THEORY; GEOMETRIC PROGRAMMING; PROBABILITY INFERENCE;
D O I
10.1016/0377-0427(92)90127-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the cross-entropy optimization problem with entropy-type constraints. A simple geometric inequality is used to derive its dual problem and to show the "strong duality theorem". We found this geometric dual is a computationally attractive canonical program that is always consistent. A "dual-to-primal" conversion formula and a "dual perturbation" algorithm are also derived for computations.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 21 条
[1]   THE ROLE OF DUALITY IN OPTIMIZATION PROBLEMS INVOLVING ENTROPY FUNCTIONALS WITH APPLICATIONS TO INFORMATION-THEORY [J].
BENTAL, A ;
TEBOULLE, M ;
CHARNES, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 58 (02) :209-223
[2]  
Boltzmann L., 1896, VORLESUNGEN GASTHEOR
[3]  
Charnes A., 1978, Mathematische Operationsforschung und Statistik, Series Optimization, V9, P21, DOI 10.1080/02331937808842461
[4]  
CHARNES A, 1974, RENDICONTI ACCADEMIA, P556
[5]  
CLAUSIUS R, 1868, MECHANICAL THEORY HE
[6]  
Duffin R.J., 1967, GEOMETRIC PROGRAMMIN
[7]   CONTROLLED DUAL PERTURBATIONS FOR POSYNOMIAL PROGRAMS [J].
FANG, SC ;
PETERSON, EL ;
RAJASEKERA, JR .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1988, 35 (01) :111-117
[8]   QUADRATICALLY CONSTRAINED MINIMUM CROSS-ENTROPY ANALYSIS [J].
FANG, SC ;
RAJASEKERA, JR .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :85-96
[9]   CONTROLLED PERTURBATIONS FOR QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS [J].
FANG, SC ;
RAJASEKERA, JR .
MATHEMATICAL PROGRAMMING, 1986, 36 (03) :276-289
[10]  
Gibbs J. W., 1902, ELEMENTARY PRINCIPLE