LEDA - A PLATFORM FOR COMBINATORIAL AND GEOMETRIC COMPUTING

被引:150
作者
MEHLHORN, K [1 ]
NAHER, S [1 ]
机构
[1] MARTIN LUTHER UNIV HALLE WITTENBERG,FACHBEREICH MATH & INFORMAT,D-06099 HALLE,GERMANY
关键词
All Open Access; Bronze; Green;
D O I
10.1145/204865.204889
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Combinatorial and geometric computing is a core area of computer science 1995. In fact, most CS curricula contain a course in data structures and algorithms. The area deals with objects such as graphs, sequences, dictionaries, trees, shortest paths, flows, matchings, points, segments, lines, convex hulls, and Voronoi diagrams and forms the basis for application areas such as discrete optimization, scheduling, traffic control, CAD, and graphics. There is no standard library of the data structures and algorithms of combinatorial and geometric computing. This is in sharp contrast to many other areas of computing. There are, for example, packages in statistics (SPSS), numerical analysis (LINPACK, EISPACK), symbolic computation (MAPLE, MATHEMATICA), and linear programming (CPLEX). © 1995, ACM. All rights reserved.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 23 条
  • [1] Aho A., 1983, DATA STRUCTURES ALGO
  • [2] Booch G, 1987, SOFTWARE COMPONENTS
  • [3] BURNIKEL C, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P16
  • [4] Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI [10.1007/BF01386390, DOI 10.1007/BF01386390]
  • [5] Mehlhorn K., 2013, DATA STRUCTURES ALGO
  • [6] Nievergelt J., 1993, ALGORITHMS DATA STRU
  • [7] O'Rourke J., 1994, COMPUTATIONAL GEOMET
  • [8] Stein C, 2001, INTRO ALGORITHMS 2 V, Vsecond
  • [9] Tarjan R.E, 1983, CBMS NSF REGIONAL C, V44
  • [10] Wood Derick, 1993, DATA STRUCTURES ALGO