DOMAIN ASSEMBLY OF THE GLUT1 GLUCOSE-TRANSPORTER

被引:40
作者
COPE, DL
HOLMAN, GD
BALDWIN, SA
WOLSTENHOLME, AJ
机构
[1] UNIV BATH, DEPT BIOCHEM, BATH BA2 7AY, AVON, ENGLAND
[2] UNIV LEEDS, DEPT BIOCHEM & MOLEC BIOL, LEEDS LS2 9JT, W YORKSHIRE, ENGLAND
关键词
D O I
10.1042/bj3000291
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A full-length construct of the glucose transporter isoform GLUT1 has been expressed in Sf9 (Spodoptera frugiperida Clone 9) insect cells, and a photolabelling approach has been used to show that the-expressed protein binds the bismannose compound 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-BMPA) and cytochalasin B at its exofacial and endofacial binding sites respectively. Constructs of GLUT1 which produce either the N-terminal (amino acids 1-272) or C-terminal (amino acids 254-492) halves are expressed at levels in the plasma membrane which are similar to that of the full-length GLUT1 (approximate to 200 pmol/mg of membrane protein), but do not bind either ATB-BMPA or cytochalasin B. When Sf9 cells are doubly infected with virus constructs producing both the C- and N-terminal halves of GLUT1, then the ligand labelling is restored. Only the C-terminal half is labelled, and, therefore, the labelling of this domain is dependent on the presence of the N-terminal half of the protein. These results suggest that the two halves of GLUT1 can assemble to form a stable complex and support the concept of a bilobular structure for the intact glucose transporters in which separate C- and N-domain halves pack together to produce a ligand-binding conformation.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 18 条
[1]   KINETICS OF THE PURIFIED GLUCOSE TRANSPORTER - DIRECT MEASUREMENT OF THE RATES OF INTERCONVERSION OF TRANSPORTER CONFORMERS [J].
APPLEMAN, JR ;
LIENHARD, GE .
BIOCHEMISTRY, 1989, 28 (20) :8221-8227
[2]   CLONING OF A RABBIT BRAIN GLUCOSE TRANSPORTER CDNA AND ALTERATION OF GLUCOSE TRANSPORTER MESSENGER-RNA DURING TISSUE-DEVELOPMENT [J].
ASANO, T ;
SHIBASAKI, Y ;
KASUGA, M ;
KANAZAWA, Y ;
TAKAKU, F ;
AKANUMA, Y ;
OKA, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 154 (03) :1204-1211
[3]  
BALDWIN SA, 1989, METHOD ENZYMOL, V174, P39
[4]  
BARNETT JEG, 1975, BIOCHEM J, V135, P537
[5]   INVESTIGATION OF THE STRUCTURE AND FUNCTION OF THE HUMAN-ERYTHROCYTE GLUCOSE TRANSPORTER BY PROTEOLYTIC DISSECTION [J].
CAIRNS, MT ;
ALVAREZ, J ;
PANICO, M ;
GIBBS, AF ;
MORRIS, HR ;
CHAPMAN, D ;
BALDWIN, SA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 905 (02) :295-310
[6]   EXOFACIAL PHOTOLABELING OF THE HUMAN ERYTHROCYTE GLUCOSE TRANSPORTER WITH AN AZITRIFLUOROETHYLBENZOYL-SUBSTITUTED BISMANNOSE [J].
CLARK, AE ;
HOLMAN, GD .
BIOCHEMICAL JOURNAL, 1990, 269 (03) :615-622
[7]   THE GLUCOSE-TRANSPORTER FAMILY - STRUCTURE, FUNCTION AND TISSUE-SPECIFIC EXPRESSION [J].
GOULD, GW ;
HOLMAN, GD .
BIOCHEMICAL JOURNAL, 1993, 295 :329-341
[8]  
HASHIRAMOTO M, 1992, J BIOL CHEM, V267, P17502
[9]  
HELLWIG B, 1992, BIOCHIM BIOPHYS ACTA, V1111, P179
[10]  
HENDERSON PJF, 1992, INT REV CYTOL, V137A, P149