3RD-ORDER LINK INTEGRALS

被引:33
作者
BERGER, MA [1 ]
机构
[1] UNIV ST ANDREWS,DEPT MATH SCI,ST ANDREWS KY16 9ST,FIFE,SCOTLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 13期
关键词
D O I
10.1088/0305-4470/23/13/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Gauss link integral measures simple linking between two curves. Helicity integrals, which are related to the Hopf invariant, similarly measure the net linking of a set of field lines (for example vortex lines or magnetic lines of force). However, these quadratic integrals do not always detect links involving three or more curves. The author presents an invariant cubic integral which can indeed detect linkage when the quadratic integrals vanish: for example the integral distinguishes the Borromean rings from three unlinked rings. This integral is based on an algebraic topology construct, the Massey trip product.
引用
收藏
页码:2787 / 2793
页数:7
相关论文
共 9 条
[1]   THE TOPOLOGICAL PROPERTIES OF MAGNETIC HELICITY [J].
BERGER, MA ;
FIELD, GB .
JOURNAL OF FLUID MECHANICS, 1984, 147 (OCT) :133-148
[2]  
EDWARDS SF, 1968, J PHYS A, V1, P15
[3]  
Fenn R, 1983, TECHNIQUES GEOMETRIC, V57
[5]  
MASSEY WS, 1958, S INT TOPOLOGIA
[6]  
MASSEY WS, 1968, P C ALGEBRAIC TOPOLO, P174
[7]  
Moffatt H. K., 1969, J FLUID MECH, V35, P117, DOI DOI 10.1017/S0022112069000991
[8]   SOME DEVELOPMENTS IN THE THEORY OF TURBULENCE [J].
MOFFATT, HK .
JOURNAL OF FLUID MECHANICS, 1981, 106 (MAY) :27-47
[9]  
MOREAU JJ, 1961, CR HEBD ACAD SCI, V252, P2810