NUMERICAL-SOLUTION OF A TIME-LIKE CAUCHY-PROBLEM FOR THE WAVE-EQUATION

被引:26
作者
KLIBANOV, M [1 ]
RAKESH [1 ]
机构
[1] UNIV DELAWARE,DEPT MATH,NEWARK,DE 19716
关键词
D O I
10.1002/mma.1670150805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D subset-of R(n) be a bounded domain with piecewise-smooth boundary, and q(x, t) a smooth function on D x [0, T]. Consider the time-like Cauchy problem u(tt) - DELTA(x)u + q(x, t)u = 0 in D x [0, T] u = g, u(n) = h on partial derivative D x [0, T]. Given g, h for which the equation has a solution, we show how to approximate u(x, t) by solving a well posed fourth-order elliptic partial differential equation (PDE). We use the method of quasi-reversibility to construct the approximating PDE. We derive error estimates and present numerical results.
引用
收藏
页码:559 / 570
页数:12
相关论文
共 13 条
[1]  
COURANT R, 1989, METHODS MATH PHYSICS, V2
[2]  
DANILAEV PG, 1990, SOV MATH DOKL, V41, P83
[3]  
HO LF, 1986, CR ACAD SCI I-MATH, V12, P443
[4]  
Hormander L., 1976, LINEAR PARTIAL DIFFE
[5]  
Isakov V., 1990, INVERSE SOURCE PROBL
[6]  
JOHN F, 1960, COMMUN PUR APPL MATH, V13, P555
[7]  
KLIBANOV MV, 1991, IN PRESS SIAM J APPL
[8]  
KLIBANOV MV, 1991, INVERSE PROBL, V7, P557
[9]  
KOMORNIK V, 1990, J MATH PURE APPL, V69, P33
[10]  
Lattes R, 1969, METHOD QUASIREVERSIB