PHASE-CONJUGATE QUANTUM COMMUNICATION WITH ZERO ERROR-PROBABILITY AT FINITE AVERAGE PHOTON NUMBER

被引:19
作者
SHAPIRO, JH [1 ]
机构
[1] MIT,ELECTR RES LAB,CAMBRIDGE,MA 02139
来源
PHYSICA SCRIPTA | 1993年 / T48卷
关键词
D O I
10.1088/0031-8949/1993/T48/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Paley-Wiener restriction on the statistics of single-mode quantum phase measurements implies that single-mode, phase-modulated quantum communication always has nonzero error probability at finite average photon number. A two-mode formulation is demonstrated which circumvents the Paley-Wiener constraint, leading to a scheme for zero-error probability phase-conjugate quantum communication at finite average photon number. The minimum root-mean-square (RMS) total photon number for error-free K-ary phase-conjugate communication turns out to be K/2, and the state achieving this optimum performance is exhibited. Application of the construct to precision measurements is briefly discussed. Here, the optimum state with RMS photon number K/2 can be used to guarantee that the phase estimate is within +/- pi/K radians of the true value.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1976, MATH SCI ENG
[2]   PHASE OPERATOR-FORMALISM FOR A 2-MODE PHOTON SYSTEM [J].
BAN, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (07) :1189-1195
[3]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[4]  
BONDURANT RS, 1984, PHYS REV D, V30, P2548, DOI 10.1103/PhysRevD.30.2548
[5]   QUANTUM PHASE DETECTION AND DIGITAL-COMMUNICATION [J].
HALL, MJW ;
FUSS, IG .
QUANTUM OPTICS, 1991, 3 (03) :147-167
[6]   THE QUANTUM DESCRIPTION OF OPTICAL-PHASE [J].
HALL, MJW .
QUANTUM OPTICS, 1991, 3 (01) :7-12
[7]  
HALL MJW, IN PRESS J MOD OPT
[8]  
Louisell W., 1964, RAD NOISE QUANTUM EL
[9]   MEASUREMENT OF THE QUANTUM PHASE BY PHOTON-COUNTING [J].
NOH, JW ;
FOUGERES, A ;
MANDEL, L .
PHYSICAL REVIEW LETTERS, 1991, 67 (11) :1426-1429
[10]  
PEGG DT, 1989, PHYS REV A, V39, P1665, DOI 10.1103/PhysRevA.39.1665