PARALLEL ALTERNATING DIRECTION MULTIPLIER DECOMPOSITION OF CONVEX-PROGRAMS

被引:99
作者
ECKSTEIN, J
机构
[1] Mathematical Sciences Research Group, Thinking Machines Corporation, Cambridge, Massachusetts
关键词
PARALLEL ALGORITHMS; DECOMPOSITION; ALTERNATING DIRECTION METHODS; CONVEX PROGRAMMING;
D O I
10.1007/BF02196592
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper describes two specializations of the alternating direction method of multipliers: the alternating step method and the epigraphic projection method. The alternating step method applies to monotropic programs, while the epigraphic method applies to general block-separable convex programs, including monotropic programs as a special case. The epigraphic method resembles an earlier parallel method due to Spingarn, but solves a larger number of simpler subproblems at each iteration. This paper gives convergence results for both the alternating step and epigraphic methods, and compares their performance on random dense separable quadratic programs.
引用
收藏
页码:39 / 62
页数:24
相关论文
共 21 条
  • [1] Bertsekas D. P, 1982, REINFORCEMENT LEARNI
  • [2] Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
  • [3] Eckstein J., 1993, ORSA Journal on Computing, V5, P84, DOI 10.1287/ijoc.5.1.84
  • [4] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [5] Eckstein J., 1989, THESIS MIT
  • [6] ECKSTEIN J, 1990, 90063 HARV BUS SCH W
  • [7] ECKSTEIN J, 1992, TMC239 THINK MACH CO
  • [8] Fortin M., 1983, AUGMENTED LAGRANGIAN, P97
  • [9] Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
  • [10] Gabay D., 1983, AUGMENTED LAGRANGIAN, V15, P299, DOI DOI 10.1016/S0168-2024(08)70034-1