THE DIFFUSION EQUATION FOR A MECHANICAL SYSTEM IN THE HIGH-FRICTION LIMIT

被引:5
作者
BATTEZZATI, M
机构
[1] Istituto di Cibernetica e Biofisica, CNR, Dipartimento di Fisica
关键词
D O I
10.1016/0009-2614(93)90147-S
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A configurational diffusion equation for a unidimensional classical mechanical system coupled to a heat reservoir through frictional forces is established. The explicit expressions for the diffusion coefficient and the drift velocity which were formulated in preceding articles are evaluated here by an expansion in inverse powers of the frictional constant up to fifth order. The results are consistent with those obtained in the literature by projection of the full Fokker-Planck equation in phase-space onto configuration space.
引用
收藏
页码:585 / 592
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]   NEW DERIVATION OF A SCHRODINGER-TYPE EQUATION FOR DISSIPATIVE SYSTEMS [J].
BATTEZZATI, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 50 (01) :7-16
[3]   LANGEVIN AND SMOLUCHOWSKI EQUATIONS FOR A PARTICLE IN A DISSIPATIVE MEDIUM VIA THE SOLUTION OF THE HJ EQUATION [J].
BATTEZZATI, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1982, 70 (01) :13-30
[4]   THE DIFFUSION EQUATION FOR A CLASSICAL MECHANICAL SYSTEM IN AN ANHARMONIC POTENTIAL [J].
BATTEZZATI, M .
CHEMICAL PHYSICS LETTERS, 1989, 164 (04) :363-369
[5]   THE DIFFUSION EQUATION FOR A CLASSICAL MECHANICAL SYSTEM IN A NONLINEAR FIELD OF FORCE - A 2ND-ORDER TREATMENT [J].
BATTEZZATI, M .
CHEMICAL PHYSICS LETTERS, 1990, 167 (1-2) :137-144
[6]   THE DIFFUSION EQUATION FOR A CLASSICAL MECHANICAL SYSTEM IN A NONLINEAR FORCE-FIELD - AN IMPROVED TREATMENT [J].
BATTEZZATI, M .
PHYSICS LETTERS A, 1992, 172 (03) :119-126
[7]   THE DIFFUSION EQUATION FOR A PARTICLE IN A ZERO-POINT FIELD [J].
BATTEZZATI, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (06) :669-679
[8]   EQUIVALENCE OF MASTER EQUATION AND LANGEVIN EQUATION [J].
BEDEAUX, D .
PHYSICS LETTERS A, 1977, 62 (01) :10-12
[9]  
Caldirola P., 1941, NUOVO C, V18, P393, DOI [10.1007/BF02960144, DOI 10.1007/BF02960144]
[10]  
COFFEY WT, 1984, MOL DIFFUSION SPECTR, pCH7