SOAP BUBBLES IN R(2) AND IN SURFACES

被引:48
作者
MORGAN, F
机构
[1] Williams College, Williamstown, MA
关键词
D O I
10.2140/pjm.1994.165.347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and regularity for ''soap bubbles'' in R2 and in surfaces, i.e., the least-perimeter way to enclose and separate regions of prescribed area. They consist of constant-curvature arcs meeting in threes at 120 degrees. If one prescribes the combinatorial type too, then the arcs may bump up against each other.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 18 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]  
Almgren Jr F.J., 1976, MEMOIRS AMS, V4
[3]  
BLEICHER M. N., 1987, STUD SCI MATH HUNG, V22, P123
[4]  
COX C, IN PRESS REAL ANAL E
[5]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[6]   THE STANDARD DOUBLE SOAP BUBBLE IN R(2) UNIQUELY MINIMIZES PERIMETER [J].
FOISY, J ;
ALFARO, M ;
BROCK, J ;
HODGES, N ;
ZIMBA, J .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (01) :47-59
[7]  
HASS J, 1991, GEODESICS SOAP BUBBL
[8]  
HOWARDS H, 1992, THESIS WILLIAMS COLL
[9]   (M, EPSILON, DELTA)-MINIMAL CURVE REGULARITY [J].
MORGAN, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :677-686
[10]   MATHEMATICIANS, INCLUDING UNDERGRADUATES, LOOK AT SOAP BUBBLES [J].
MORGAN, F .
AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (04) :343-351