PETROV TYPE-D AND TYPE-II PERFECT-FLUID SOLUTIONS IN GENERALIZED KERR-SCHILD FORM

被引:9
作者
MARTINPASCUAL, F
SENOVILLA, JMM
机构
关键词
D O I
10.1063/1.527991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:937 / 944
页数:8
相关论文
共 20 条
[1]   CONVENTIONAL PROOF OF KERRS THEOREM [J].
COX, D ;
FLAHERTY, EJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (01) :75-79
[2]   SOLUTIONS OF EINSTEIN AND EINSTEIN-MAXWELL EQUATIONS [J].
DEBNEY, GC ;
KERR, RP ;
SCHILD, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) :1842-+
[3]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[4]  
KAMKE E, 1971, DIFFERENTIALGLEICHUN
[5]   A NEW SOLUTION FOR A ROTATING PERFECT FLUID IN GENERAL-RELATIVITY [J].
KRAMER, D .
CLASSICAL AND QUANTUM GRAVITY, 1984, 1 (01) :L3-L7
[6]  
Kramer D, 1980, EXACT SOLUTIONS EINS
[7]   PETROV TYPE-D PERFECT-FLUID SOLUTIONS IN GENERALIZED KERR-SCHILD FORM [J].
MARTIN, J ;
SENOVILLA, JMM .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) :265-270
[8]  
MARTIN J, 1986, J MATH PHYS, V27, P2209, DOI 10.1063/1.526991
[9]   COMPLEX RELATIVITY AND DOUBLE KS METRICS [J].
PLEBANSKI, JF ;
SCHILD, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 35 (01) :35-53
[10]  
SENOVILLA JMM, 1986, THESIS U SALAMANCA