Nonminimal coupling, quartic potential and perfect fluid cosmologies

被引:9
作者
Capozziello, S.
de Ritis, R.
Rubano, C.
Scudellaro, P.
机构
[1] Osservatorio Astron Capodimonte, I-80131 Naples, Italy
[2] Ist Italiano Studi Filosof, Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy
[4] Univ Naples, Dipartimento Sci Fis, I-80125 Naples, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 1995年 / 4卷 / 06期
关键词
D O I
10.1142/S021827189500051X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Perfect-fluid matter, satisfying the equation of state p = (gamma - 1)rho, is considered in cosmologies where the geometry is nonminimally coupled with a scalar field phi and the potential of phi is lambda phi(4) + Lambda. Exact solutions are found when gamma is a constant describing the ordinary forms of matter (gamma = 1, dust, gamma = 4/3, radiation, gamma = 2, stiff matter and gamma = 0, scalar field matter) and a discussion is done in order to recover Einstein gravity and the Newton constant observed today. The various solutions can be classified according to the different values of gamma, lambda and Lambda.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 43 条
[2]   COMPARISON OF GRAND UNIFIED THEORIES WITH ELECTROWEAK AND STRONG COUPLING-CONSTANTS MEASURED AT LEP [J].
AMALDI, U ;
DEBOER, W ;
FURSTENAU, H .
PHYSICS LETTERS B, 1991, 260 (3-4) :447-455
[3]  
[Anonymous], 1978, FDN MECH
[4]   PERFECT FLUID SCALAR-TENSOR COSMOLOGIES [J].
BARROW, JD ;
MIMOSO, JP .
PHYSICAL REVIEW D, 1994, 50 (06) :3746-3754
[5]  
Birrell N., 1986, QUANTUM FIELDS CURVE
[6]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[7]   LARGE-SCALE DISTRIBUTION OF GALAXIES AT THE GALACTIC POLES [J].
BROADHURST, TJ ;
ELLIS, RS ;
KOO, DC ;
SZALAY, AS .
NATURE, 1990, 343 (6260) :726-728
[8]   INFLATIONARY MODELS WITH EXPONENTIAL POTENTIALS [J].
BURD, AB ;
BARROW, JD .
NUCLEAR PHYSICS B, 1988, 308 (04) :929-945
[9]  
BUSARELLO G, 1994, ASTRON ASTROPHYS, V283, P717
[10]   NONMINIMAL COUPLING AND COSMIC NO-HAIR THEOREM [J].
CAPOZZIELLO, S ;
DERITIS, R ;
SCUDELLARO, P .
PHYSICS LETTERS A, 1994, 188 (02) :130-136