YET ANOTHER POLYNOMIAL PRECONDITIONER FOR THE CONJUGATE-GRADIENT ALGORITHM

被引:13
作者
OLEARY, DP
机构
[1] Department of Computer Science Institute for Advanced Computer Studies University of Maryland, College Park
关键词
D O I
10.1016/0024-3795(91)90385-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polynomial preconditioning is a useful tool in the effective use of the conjugate gradient algorithm on special architectures such as message-passing parallel computers, machines with hierarchical memory, vector processors, and machines with very limited memory. In this work we investigate the use of a new adaptive algorithm which uses the polynomial preconditioner based on the residual polynomial from k steps of the conjugate gradient algorithm.
引用
收藏
页码:377 / 388
页数:12
相关论文
共 14 条
[1]   M-STEP PRECONDITIONED CONJUGATE-GRADIENT METHODS [J].
ADAMS, L .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :452-463
[2]   ADAPTIVE POLYNOMIAL PRECONDITIONING FOR HERMITIAN INDEFINITE LINEAR-SYSTEMS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
BIT, 1989, 29 (04) :583-609
[3]   BLOCK PRECONDITIONING FOR THE CONJUGATE-GRADIENT METHOD [J].
CONCUS, P ;
GOLUB, GH ;
MEURANT, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :220-252
[4]  
Concus P., 1976, SPARSE MATRIX COMPUT, P309
[5]   APPROXIMATING THE INVERSE OF A MATRIX FOR USE IN ITERATIVE ALGORITHMS ON VECTOR PROCESSORS [J].
DUBOIS, PF ;
GREENBAUM, A ;
RODRIGUE, GH .
COMPUTING, 1979, 22 (03) :257-268
[6]   POLYNOMIAL PRECONDITIONERS FOR CONJUGATE-GRADIENT CALCULATIONS [J].
JOHNSON, OG ;
MICCHELLI, CA ;
PAUL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :362-376
[7]  
JOUBERT W, 1990, CNA242 U TEX AUST CT
[8]  
MAGNUS R, 1952, J RES NBS, V49, P409
[9]   ITERATIVE SOLUTION METHOD FOR LINEAR-SYSTEMS OF WHICH COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX [J].
MEIJERINK, JA ;
VANDERVORST, HA .
MATHEMATICS OF COMPUTATION, 1977, 31 (137) :148-162
[10]  
NACHTIGAL NM, IN PRESS SIAM J MATR