NUMERICAL RELATIVITY - EVOLVING SPACETIME

被引:11
作者
BONA, C
MASSO, J
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS | 1993年 / 4卷 / 04期
关键词
D O I
10.1142/S0129183193000690
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The construction of numerical solutions of Einstein's General Relativity equations is formulated as an initial-value problem. The space-plus-time (3 + 1) decomposition of the spacetime metric tensor is used to discuss the structure of the field equations. The resulting evolution system is shown to depend in a crucial way on the coordinate gauge. The mandatory use of singularity avoiding coordinate conditions (like maximal slicing or similar gauges) is explained. A brief historical review of Numerical Relativity is included, showing the enormous effort in constructing codes based in these gauges, which lead to non-hyperbolic evolution systems, using ''ad hoc'' numerical techniques. A new family of first order hyperbolic evolution systems for the vacuum Einstein field equations in the harmonic slicing gauge is presented. This family depends on a symmetric 3 x 3 array of parameters which can be used to scale the dynamical variables in future numerical applications.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 131 条
[1]   NUMERICALLY GENERATED BLACK-HOLE SPACETIMES - INTERACTION WITH GRAVITATIONAL-WAVES [J].
ABRAHAMS, A ;
BERNSTEIN, D ;
HOBILL, D ;
SEIDEL, E ;
SMARR, L .
PHYSICAL REVIEW D, 1992, 45 (10) :3544-3558
[2]   GAUGE-INVARIANT TREATMENT OF GRAVITATIONAL-RADIATION NEAR THE SOURCE - ANALYSIS AND NUMERICAL SIMULATIONS [J].
ABRAHAMS, AM ;
EVANS, CR .
PHYSICAL REVIEW D, 1990, 42 (08) :2585-2594
[3]  
ABRAHAMS AM, 1992, CRSR1010 CORN PREPR
[4]  
ABRAHAMS AM, 1989, FRONTIERS NUMERICAL
[5]  
ABRAHAMS AM, 1991, 2ND TEX S 3 D NUM RE
[6]  
ANDERSON JL, 1986, DYNAMICAL SPACETIMES
[7]  
ANDERSON JL, 1987, GEN RELAT GRAVIT, V19, P583
[8]   NUMERICAL-METHODS FOR SOLVING THE PLANAR VACUUM EINSTEIN EQUATIONS [J].
ANNINOS, P ;
CENTRELLA, J ;
MATZNER, RA .
PHYSICAL REVIEW D, 1991, 43 (06) :1808-1824
[9]   NONLINEAR SOLUTIONS FOR INITIAL DATA IN THE VACUUM EINSTEIN EQUATIONS IN PLANE SYMMETRY [J].
ANNINOS, P ;
CENTRELLA, J ;
MATZNER, R .
PHYSICAL REVIEW D, 1989, 39 (08) :2155-2171
[10]  
ANNINOS P, 1989, FRONTIERS NUMERICAL