REMARKS ON CERTAIN SEPARABILITY STRUCTURES AND THEIR APPLICATIONS TO GENERAL RELATIVITY

被引:74
作者
BENENTI, S
FRANCAVIGLIA, M
机构
[1] Institute of Mathematical Physics, University of Turin
关键词
D O I
10.1007/BF00757025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
General results of the theory of separability for the geodesic equation in (Vn, g) are applied to deduce the canonical form of a separable metric with n- 2 Killing vectors. Applications to vacuum space-times with two Killing vectors are investigated. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 19 条
[1]  
BENENTI S, 1976, CR ACAD SCI A MATH, V283, P215
[2]  
Benenti S., 1977, Reports on Mathematical Physics, V12, P311, DOI 10.1016/0034-4877(77)90029-5
[3]  
BENENTI S, 1971, REND ACC NAZ LINCEI, V8, P51
[4]  
BENENTI S, UNPUBLISHED
[5]   MAXIMAL ANALYTIC EXTENSION OF KERR METRIC [J].
BOYER, RH ;
LINDQUIST, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) :265-+
[6]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[7]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[8]  
DEMIANSKI M, UNPUBLISHED
[9]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[10]   SYMMETRIES OF KERR BLACK-HOLES [J].
HUGHSTON, LP ;
SOMMERS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (02) :129-133