C-TERMINAL TRUNCATED GLUCOSE TRANSPORTER IS LOCKED INTO AN INWARD-FACING FORM WITHOUT TRANSPORT ACTIVITY

被引:126
作者
OKA, Y
ASANO, T
SHIBASAKI, Y
LIN, JL
TSUKUDA, K
KATAGIRI, H
AKANUMA, Y
TAKAKU, F
机构
[1] ASAHI LIFE FDN,INST DIABET CARE,TOKYO,JAPAN
[2] ASAHI LIFE FDN,INST RES,TOKYO,JAPAN
关键词
D O I
10.1038/345550a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE facilitated glucose transporters comprise a structurally related family of proteins predicted to have 12 membrane-spanning domains, with the amino terminus, a relatively large middle loop and the carboxy-terminus all oriented towards the cytoplasm1-10. An alternating conformation model has been proposed to explain the mechanism of facilitated glucose transport11-17. To understand the structure-function relationships, especially the role of the intracellular C-terminal domain, we have modified the rabbit equivalent of the erythroid-type transporter, GLUT1 (réf. 18), using complementary DNA to code for a deletion mutant that lacks most (37 out of 42 amino acids) of the intracellular C-terminal domain. This deletion mutant is expressed at the cell surface of Chinese hamster ovary (CHO) cells, but is functionally inactive, probably because it has lost its capacity to alternate in conformation and so is locked into an inward-facing form. © 1990 Nature Publishing Group.
引用
收藏
页码:550 / 553
页数:4
相关论文
共 26 条
[1]  
ASANO T, 1989, J BIOL CHEM, V264, P3416
[2]   CLONING OF A RABBIT BRAIN GLUCOSE TRANSPORTER CDNA AND ALTERATION OF GLUCOSE TRANSPORTER MESSENGER-RNA DURING TISSUE-DEVELOPMENT [J].
ASANO, T ;
SHIBASAKI, Y ;
KASUGA, M ;
KANAZAWA, Y ;
TAKAKU, F ;
AKANUMA, Y ;
OKA, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 154 (03) :1204-1211
[3]   ASYMMETRY OF FACILITATED TRANSFER SYSTEM FOR HEXOSES IN HUMAN RED-CELLS AD SIMPLE KINETICS OF A 2 COMPONENT MODEL [J].
BAKER, GF ;
WIDDAS, WF .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 231 (01) :143-165
[4]   THE MONOSACCHARIDE TRANSPORT-SYSTEM OF THE HUMAN-ERYTHROCYTE - ORIENTATION UPON RECONSTITUTION [J].
BALDWIN, JM ;
LIENHARD, GE ;
BALDWIN, SA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 599 (02) :699-714
[5]   EVIDENCE FOR 2 ASYMMETRIC CONFORMATIONAL STATES IN HUMAN ERYTHROCYTE SUGAR-TRANSPORT SYSTEM [J].
BARNETT, JEG ;
HOLMAN, GD ;
CHALKLEY, RA ;
MUNDAY, KA .
BIOCHEMICAL JOURNAL, 1975, 145 (03) :417-429
[6]   ASYMMETRY OF HEXOSE TRANSFER SYSTEM IN HUMAN ERYTHROCYTES - COMPARISON OF EFFECTS OF CYTOCHALASIN B, PHLORETIN AND MALTOSE AS COMPETITIVE INHIBITORS [J].
BASKETTER, DA ;
WIDDAS, WF .
JOURNAL OF PHYSIOLOGY-LONDON, 1978, 278 (MAY) :389-401
[7]   IDENTIFICATION OF A NOVEL GENE ENCODING AN INSULIN-RESPONSIVE GLUCOSE TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ .
CELL, 1989, 57 (02) :305-315
[8]   CLONING AND CHARACTERIZATION OF A CDNA-ENCODING THE RAT-BRAIN GLUCOSE-TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ ;
HASPEL, HC ;
ROSEN, OM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (16) :5784-5788
[9]   INVESTIGATION OF THE STRUCTURE AND FUNCTION OF THE HUMAN-ERYTHROCYTE GLUCOSE TRANSPORTER BY PROTEOLYTIC DISSECTION [J].
CAIRNS, MT ;
ALVAREZ, J ;
PANICO, M ;
GIBBS, AF ;
MORRIS, HR ;
CHAPMAN, D ;
BALDWIN, SA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 905 (02) :295-310
[10]  
CALDERHEAD DM, 1988, J BIOL CHEM, V263, P12171