MAXIMUM PACKINGS WITH ODD CYCLES

被引:7
作者
ELZANATI, SI [1 ]
机构
[1] ILLINOIS STATE UNIV,DEPT MATH,NORMAL,IL 61790
关键词
D O I
10.1016/0012-365X(94)90375-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to obtain maximum packings of K2kg + v with k-cycles when k greater-than-or-equal-to 3 is odd, g a positive integer, and v even with 0 less-than-or-equal-to v < 2k. Moreover, under certain conditions on v, we obtain maximum packings of K2kg+v.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 13 条
  • [1] Alspach B., 1980, ANN DISCRETE MATH, P155, DOI [10.1016/S0167-5060(08)70053-0, DOI 10.1016/S0167-5060(08)70053-0]
  • [2] BELL ET, 1991, THESIS AUBURN U AUBU
  • [3] BERMOND J.-C., 1978, ARS COMBIN, V5, P293
  • [4] ON THE CONSTRUCTION OF ODD CYCLE SYSTEMS
    HOFFMAN, DG
    LINDNER, CC
    RODGER, CA
    [J]. JOURNAL OF GRAPH THEORY, 1989, 13 (04) : 417 - 426
  • [5] JACKSON B. W., 1988, J COMBIN INFORM SYST, V13, P20
  • [6] Kotzig A., 1965, MAT FYZ CAS, V15, P227
  • [7] RODGER CA, IN PRESS 2ND P INT C
  • [8] ROSA A, IN PRES PACKING PENT
  • [9] Rosa A., 1966, MAT FYZ CASOPIS SLOV, V16, P349
  • [10] Rosa A., 1966, CAS PEST MAT, V91, P53