REDUCED MAGNETOFLUID DYNAMICS IN THE LOWER-HYBRID FREQUENCY-RANGE

被引:19
作者
SEYLER, CE [1 ]
机构
[1] CORNELL UNIV,PLASMA STUDIES LAB,ITHACA,NY 14853
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 09期
关键词
D O I
10.1063/1.859616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electromagnetic two-fluid dynamics for plasmas in a strong applied magnetic field is investigated using a model for phenomena having frequencies in the range OMEGA-i much less than omega much less than OMEGA-e, and long parallel wavelengths epsilon = L perpendicular-to/L parallel-to much less than 1. The model retains the essential nonlinear physics of the magnetosonic, lower-hybrid, and oblique whistler waves. At least two unstable modes can exist for equilibria with magnetic shear; a local magnetic interchange whistler mode and a collisionless tearing mode. These modes are studied using a quadratic energy relation for linear stability and by three-dimensional time-dependent numerical computations.
引用
收藏
页码:2449 / 2451
页数:3
相关论文
共 11 条
[1]  
DRAKE JF, 1987, PHYS FLUIDS, V27, P898
[2]  
Filippov D. V., 1986, Soviet Journal of Plasma Physics, V12, P548
[3]   STABILITY OF A PLASMA CONTAINED BY A STRONGLY NON-UNIFORM MAGNETIC FIELD [J].
GORDEEV, AV .
NUCLEAR FUSION, 1970, 10 (03) :319-&
[4]  
GORDEEV AV, 1969, ZH EKSP TEOR FIZ+, V28, P1226
[5]   MAGNETOHYDRODYNAMIC EQUATIONS FOR SYSTEMS WITH LARGE LARMOR RADIUS [J].
HASSAM, AB ;
HUBA, JD .
PHYSICS OF FLUIDS, 1988, 31 (02) :318-325
[6]  
HAZELTINE RD, 1985, PHYS FLUIDS, V28, P2466, DOI 10.1063/1.865255
[7]  
ISICHENKO MB, 1987, ZH EKSP TEOR FIZ+, V66, P702
[8]   A MATHEMATICAL-MODEL OF THE STRUCTURE AND EVOLUTION OF SMALL-SCALE DISCRETE AURORAL ARCS [J].
SEYLER, CE .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1990, 95 (A10) :17199-17215
[9]   NONLINEAR, 3-DIMENSIONAL MAGNETOHYDRODYNAMICS OF NONCIRCULAR TOKAMAKS [J].
STRAUSS, HR .
PHYSICS OF FLUIDS, 1976, 19 (01) :134-140
[10]  
SUDAN RN, 1979, PHYS REV LETT, V42, P1279