ON INTEGER POINTS IN POLYHEDRA

被引:48
作者
COOK, W
HARTMANN, M
KANNAN, R
MCDIARMID, C
机构
[1] BELL COMMUN RES INC,RED BANK,NJ
[2] CARNEGIE MELLON UNIV,DEPT COMP SCI,PITTSBURGH,PA 15213
[3] UNIV N CAROLINA,DEPT HLTH & SAFETY,CHAPEL HILL,NC 27514
[4] INST ECON & STAT,OXFORD,ENGLAND
[5] UNIV BONN,INST OKONOMET & OPERAT RES,W-5300 BONN,GERMANY
关键词
D O I
10.1007/BF01191202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an upper bound on the number of vertices of P(I), the integer hull of a polyhedron P, in terms of the dimension n of the space, the number m of inequalities required to describe P, and the size-phi of these inequalities. For fixed n the bound is O(m(n)phi(n-1)). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1 + epsilon in time polynomial in m, phi and 1/epsilon when the dimension n is fixed.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 25 条
[1]  
BARANY I, 1989, 917 YALE U COWL F RE
[2]  
Cassels J. W. S., 1971, INTRO GEOMETRY NUMBE
[3]  
Cherkasskij V. D., 1984, EKONOM MAT METODY, V20, P1132
[4]   2 ALGORITHMS FOR DETERMINING VOLUMES OF CONVEX POLYHEDRA [J].
COHEN, J ;
HICKEY, T .
JOURNAL OF THE ACM, 1979, 26 (03) :401-414
[5]  
DYER M, UNPUB SIAM J COMPUTI
[6]  
DYER M, 1989, 8840 CARNU DEP MATH
[7]   BRICK DECOMPOSITIONS AND THE MATCHING RANK OF GRAPHS [J].
EDMONDS, J ;
LOVASZ, L ;
PULLEYBLANK, WR .
COMBINATORICA, 1982, 2 (03) :247-274
[8]  
Gary Michael R., 1979, COMPUTERS INTRACTABI
[9]  
Grotschel M., 1988, GEOMETRIC ALGORITHMS
[10]  
GRUBER PM, 1987, GEOMETRY NUMBERS