The mRNA of vaccinia virus, like that of eukaryotes, possesses a poly(A) tail. VP55, the catalytic subunit of the heterodimeric vaccinia virus poly(A) polymerase, was overexpressed and purified to near homogeneity. VP55 polyadenylated a 30-mer primer representing the 3' end of a vaccinia virus mRNA bimodally: 30-35 adenylates were added in a rapid, processive, initial burst, after which polyadenylation decelerated dramatically and became nonprocessive. Polyadenylation of variants of the 30-mer primer, which contained preformed 3'-oligo(A) extensions, showed that the transition between the two modes of polyadenylation was regulated by the net length of the 3'-oligo(A) tail rather than the number of adenylate additions catalyzed by VP55. Primers comprising oligo(A) alone were polyadenylated only if they were >34 nucleotides in length and, then, only in the slow nonprocessive mode. These data support a dynamic model whereby the mode of polyadenylation by VP55 is regulated by sequences within the 3' 30-35 nucleotides of the mRNA: Polyadenylation is rapid and processive until a net 3'-oligo(A) length of 30-35 nucleotides is achieved. Consistent with this, excess oligo(A) did not compete with the 30-mer primer for rapid processive polyadenylation. The primer specificity of VP55 may contribute to the selective polyadenylation of newly formed mRNA.