SYMMETRY OF SOLITARY WAVES

被引:98
作者
CRAIG, W
STERNBERG, P
机构
关键词
D O I
10.1080/03605308808820554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:603 / 633
页数:31
相关论文
共 24 条
[1]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[2]  
AMICK CJ, 1981, ARCH RATION MECH AN, V76, P9, DOI 10.1007/BF00250799
[3]  
BEALE JT, 1977, COMMUN PUR APPL MATH, V30, P373
[4]  
BERESTYCKI H, UNPUB
[5]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003
[6]   THE EXISTENCE OF SOLITARY WAVES [J].
FRIEDRICHS, KO ;
HYERS, DH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (03) :517-550
[7]  
Garabedian P. R., 1965, J ANAL MATH, V14, P161
[8]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[9]  
Gidas B., 1981, MATH ANAL APPL PART, V7a, P369
[10]  
HOPF H, 1956, LECTURES DIFFERENTIA