2-PLUS-ONE-DIMENSIONAL DIFFERENTIAL GEOMETRY

被引:40
作者
KOENDERINK, JJ
VANDOORN, AJ
机构
[1] Buys Ballot Laboratorium, Utrecht Biophysics Research Institute, 2508 TA Utrecht
关键词
COURSE; DIFFERENTIAL GEOMETRY; INVARIANT FEATURE; ISOCONTOUR; RELIEF; RIDGE; SCALING INVARIANCE; SLOPE LINE; TOPOGRAPHIC CURVE;
D O I
10.1016/0167-8655(94)90134-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typical images are scalar fields on the Euclidean plane, or surfaces in ''two-plus-one-dimensional'' space. We study the invariant image structure with respect to arbitrary, monotonic and affine intensity transformations. Invariants are useful features for recognition or registration problems. We correct (common) mistaken notions concerning topographical ridges and courses. Results are relevant in a much wider context.
引用
收藏
页码:439 / 443
页数:5
相关论文
共 22 条
[1]  
Boussinesq J., 1871, CR HEBD ACAD SCI, V73, P1368
[2]  
BOUSSINESQ J, 1887, COURS ANAL INFINITES, P229
[3]  
CARTAN H, 1983, DIFFERENTIAL FORMS
[4]  
CARTAN H, 1983, DIFFERENTIAL CALCULU
[5]  
Cayley A, 1859, LONDON EDINBURGH DUB, V18, P264, DOI [10.1080/14786445908642760, DOI 10.1080/14786445908642760]
[6]  
COLCHESTER ACF, 1990, NATO ADV SCI I F-COM, V60, P45
[7]   A REPRESENTATION FOR SHAPE BASED ON PEAKS AND RIDGES IN THE DIFFERENCE OF LOW-PASS TRANSFORM [J].
CROWLEY, JL ;
PARKER, AC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (02) :156-170
[8]  
DE CHAMP M. B., 1877, J MATH PURE APPL, V3, P99
[9]  
DESAINTVENANT, 1852, B SOC PHILOMATH PARI
[10]  
EBERLY DR, 1993, UNPUB RIDGES IMAGE A