DYON MONOPOLE BOUND-STATES, SELF-DUAL HARMONIC FORMS ON THE MULTI-MONOPOLE MODULI SPACE, AND SL(2,Z) INVARIANCE IN STRING THEORY

被引:307
作者
SEN, A
机构
[1] Tata Institute of Fundamental Research, Bombay, 400005, Homi Bhabha Road
关键词
D O I
10.1016/0370-2693(94)90763-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Existence of SL(2,Z) duality in toroidally compactified heterotic string theory (or in the N = 4 supersymmetric gauge theories), that includes the strong-weak coupling duality transformation, implies the existence of certain supersymmetric bound states of monopoles and dyons. We show that the existence of these bound states, in turn, requires the existence of certain normalizable, (anti-)self-dual, harmonic forms on the moduli space of BPS multi-monopole configurations, with specific symmetry properties. We give an explicit construction of this harmonic form on the two monopole moduli space, thereby proving the existence of all the required bound states in the two-monopole sector.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 23 条
[1]   LOW-ENERGY SCATTERING OF NON-ABELIAN MAGNETIC MONOPOLES [J].
ATIYAH, M ;
HITCHIN, NJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533) :459-469
[2]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[3]  
ATIYAK M, 1988, GEOMETRY DYNAMICS MA
[4]  
BLUM J, EFI9404 PREPR
[5]   STRONG WEAK-COUPLING DUALITY AND NONPERTURBATIVE EFFECTS IN STRING THEORY [J].
FONT, A ;
IBANEZ, LE ;
LUST, D ;
QUEVEDO, F .
PHYSICS LETTERS B, 1990, 249 (01) :35-43
[6]  
GAUNTLETT J, EFI9309 PREPR
[7]   LOW-ENERGY DYNAMICS OF SUPERSYMMETRIC SOLITONS [J].
GAUNTLETT, JP .
NUCLEAR PHYSICS B, 1993, 400 (1-3) :103-125
[8]   THE HIDDEN SYMMETRIES OF MULTI-CENTRE METRICS [J].
GIBBONS, GW ;
RUBACK, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (02) :267-300
[9]   CLASSICAL AND QUANTUM DYNAMICS OF BPS MONOPOLES [J].
GIBBONS, GW ;
MANTON, NS .
NUCLEAR PHYSICS B, 1986, 274 (01) :183-224
[10]   STRING THEORY AND THE DONALDSON POLYNOMIAL [J].
HARVEY, JA ;
STROMINGER, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) :221-232