Resonance regions for families of torus maps

被引:29
作者
Kim, Seunghwan [1 ,2 ]
MacKay, R. S. [1 ,2 ]
Guckenheimer, J.
机构
[1] Univ Warwick, Nonlinear Syst Lab, Coventry CV4 7AL, W Midlands, England
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1088/0951-7715/2/3/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A resonance region for a family of torus maps f: T-n -> T-n is the set of parameter values for which there exists a periodic orbit with a given rotation vector. For generic periodic families, resonance regions are projections of multiply connected manifolds. In many cases these are tori. Numerical studies of the case n = 2 illustrate the complicated internal bifurcation structure of the resonance regions. Codimension-two bifurcations and transversal homoclinic orbits are shown to exist. We discuss the significance of our findings for the transition to chaos from three-frequency quasiperiodic
引用
收藏
页码:391 / 404
页数:14
相关论文
共 22 条
[1]  
ARNOLD V, 1983, GEOMETRICAL METHODS
[2]   BIFURCATIONS FROM AN INVARIANT CIRCLE FOR 2-PARAMETER FAMILIES OF MAPS OF THE PLANE - A COMPUTER-ASSISTED STUDY [J].
ARONSON, DG ;
CHORY, MA ;
HALL, GR ;
MCGEHEE, RP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) :303-354
[3]  
AVEZ A, 1986, DIFFERENTIAL CALCULU
[4]  
BERRY D, 1985, THESIS WARWICK U
[5]  
Bogdanov R. I., 1975, FUNCT ANAL APPL+, V9, P144
[6]  
CHENCINER A, 1981, NOTE CRAS 1, V292, P507
[7]  
CREBOGI C, 1985, PHYSICA D, V15, P354
[8]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[9]  
Guckenheimer J., 1983, APPL MATH SCI SERIES, V42
[10]  
Guillemin V, 1974, DIFFERENTIAL TOPOLOG