The gluing bifurcation: I. Symbolic dynamics of the closed curves

被引:37
作者
Gambaudo, J. M. [1 ]
Glendinning, P. [2 ]
Tresser, C. [1 ]
机构
[1] Lab Associe 168, F-06034 Nice, France
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1088/0951-7715/1/1/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic orbits which can occur in a neighbourhood of a codimension-two gluing bifurcation involving two trajectories bi-asymptotic to the same stationary point. Provided some simple conditions are satisfied we prove that there are either zero, one or two closed curves and that these hove a specific symbolic form which, in particular, allows us to associate a rotation number with each of them. Furthermore, pairs of orbits which can coexist are identified: the two rotation numbers must be Farey neighbours.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 17 条
[1]   A POSSIBLE NEW MECHANISM FOR THE ONSET OF TURBULENCE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
PHYSICS LETTERS A, 1981, 81 (04) :197-201
[2]   POSSIBLE NEW STRANGE ATTRACTORS WITH SPIRAL STRUCTURE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) :573-579
[3]  
BELITSKII GR, 1973, FUNCTIONAL ANAL APPL, V7, P268
[4]  
COULLET P, 1984, CR ACAD SCI I-MATH, V299, P253
[5]  
GAMBAUDO JM, 1984, CR ACAD SCI I-MATH, V299, P823
[6]  
GAMBAUDO JM, 1985, CR ACAD SCI I-MATH, V300, P311
[7]  
GAMBAUDO JM, 1984, CR ACAD SCI I-MATH, V299, P711
[8]  
GAMBAUDO JM, 1987, DYNAMICS QUASICONTRA
[9]  
GAMBAUDO JM, 1985, J PHYS LETT, V46, P653
[10]   BIFURCATIONS NEAR HOMOCLINIC ORBITS WITH SYMMETRY [J].
GLENDINNING, P .
PHYSICS LETTERS A, 1984, 103 (04) :163-166