RATE OF CONVERGENCE FOR THE EUCLIDEAN MINIMUM SPANNING TREE LIMIT LAW

被引:8
作者
JAILLET, P [1 ]
机构
[1] ECOLE NATL PONTS & CHAUSSEES, MATH APPL LAB, F-93167 NOISY LE GRAND, FRANCE
关键词
EUCLIDEAN MINIMUM SPANNING TREE; ASYMPTOTIC ANALYSIS; RATE OF CONVERGENCE;
D O I
10.1016/0167-6377(93)90098-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let N(n) be the number of points of a Poisson point process of intensity n times the Lebesgue measure over [0,1]2 , and let L(MST)(N(n)) be the length of the optimal spanning tree connecting these N(n) points. It is well-known that there is a constant 0 < beta(MST) < infinity such that lim(n --> infinity) EL(MST)(N(n))/square-root n = beta(MST). In this paper we give the exact rate of convergence for this limiting behavior.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 9 条
[1]  
ALEXANDER K, 1992, NOTE SOME RATES CONV
[2]  
Beardwood J, 1959, P CAMBRIDGE PHILOS S, V55, P299, DOI [DOI 10.1017/S0305004100034095, 10.1017/S0305004100034095]
[3]   RANDOM MINIMAL TREES [J].
GILBERT, EN .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (02) :376-&
[4]  
JAILLET P, 1992, MATH OPER RES, V17, P965
[5]  
Karp R. M., 1977, Mathematics of Operations Research, V2, P209, DOI 10.1287/moor.2.3.209
[6]  
RHEE W, 1988, ANN PROBAB, V17, P1
[7]  
RHEE W, 1992, BOUNDARY EFFECTS TRA
[8]   GROWTH-RATES OF EUCLIDEAN MINIMAL SPANNING-TREES WITH POWER WEIGHTED EDGES [J].
STEELE, JM .
ANNALS OF PROBABILITY, 1988, 16 (04) :1767-1787
[9]   SUBADDITIVE EUCLIDEAN FUNCTIONALS AND NON-LINEAR GROWTH IN GEOMETRIC PROBABILITY [J].
STEELE, JM .
ANNALS OF PROBABILITY, 1981, 9 (03) :365-376