REDISTRIBUTION OF SYNAPTIC VESICLES AND THEIR PROTEINS IN TEMPERATURE-SENSITIVE SHIBIRE(TS1) MUTANT DROSOPHILA

被引:65
作者
VANDEGOOR, J
RAMASWAMI, M
KELLY, R
机构
[1] UNIV CALIF SAN FRANCISCO,HORMONE RES INST,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM & BIOPHYS,SAN FRANCISCO,CA 94143
关键词
CYSTEINE STRING PROTEINS; SYNAPTOBREVIN; SYNAPTOTAGMIN;
D O I
10.1073/pnas.92.12.5739
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From an extract of Drosophila melanogaster head homogenates, a membrane fraction can be isolated that has the same sedimentation properties as vertebrate synaptic vesicles and contains Drosophila synaptotagmin, The fraction disappears from homogenates of temperature-sensitive (ts) mutant shibire(ts1) (shi(ts1)) flies paralyzed by exposure to nonpermissive temperatures, and reappears on return to permissive temperatures. Since reversible, temperature-dependent depletion of synaptic vesicles is known to occur in shibire(ts1) flies, we conclude that the fraction we have identified contains synaptic vesicles, We have examined the fate of synaptic vesicle membrane proteins in shibire flies at nonpermissive temperatures and found that all of these vesicle antigens are transferred to rapidly sedimenting membranes and codistribute with a plasma membrane marker by both glycerol velocity and metrizamide density sedimentation and by confocal microscopy, Three criteria were used to establish that other neuron-specific antigens-neuronal synaptobrevin and cysteine-string proteins-are legitimate components of synaptic vesicles: cosedimentation with Drosophila synaptotagmin, immunoadsorption, and disappearance of these antigens from the vesicle fractions in paralyzed shibire flies.
引用
收藏
页码:5739 / 5743
页数:5
相关论文
共 21 条
  • [1] Liu J.-P., Sim A.T.R., Robinson P.J., Science, 265, pp. 970-974, (1994)
  • [2] Robinson P.J., Sontag J.-M., Liu J.P., Fykse E.M., Salughter C., McMahon H., Sudhof T.C., Nature (London), 365, pp. 163-166, (1993)
  • [3] Poodry C.A., Edgar L., J. Cell Biol., 81, pp. 520-527, (1979)
  • [4] Littleton J.T., Bellen H.J., Perin M.S., Development (Cambridge, U.K.), 118, pp. 1077-1088, (1993)
  • [5] Zinsmaier K.E., Hofbauer A., Heimbeck G., Pflugfelder G.O., Buchner S., Buchner E., J. Neurogenet., 7, pp. 15-29, (1990)
  • [6] Clift-O'Grady L., Linstedt A.D., Lowe A.W., Grote E., Kelly R.B., J. Cell Biol., 110, pp. 1693-1703, (1990)
  • [7] Ramaswami M., Krishnan K.S., Kelly R.B., Neuron, 13, pp. 363-375, (1994)
  • [8] Littleton J.T., Stern M., Schulze K., Perin M., Bellen H.J., Cell, 74, pp. 1125-1134, (1993)
  • [9] Kosaka T., Ikeda K., J. Neurobiol., 14, pp. 207-225, (1983)
  • [10] Harrison S.D., Broadie K., Van De Goor J., Rubin G.M., Neuron, 13, pp. 555-566, (1994)