USING COPOSITIVITY FOR GLOBAL OPTIMALITY CRITERIA IN CONCAVE QUADRATIC-PROGRAMMING PROBLEMS

被引:19
作者
DANNINGER, G
BOMZE, IM
机构
[1] Department of Statistics and Computer Science, University of Vienna, Wien, A-1010
关键词
NONCONVEX NONLINEAR PROGRAMMING; GLOBAL OPTIMIZATION; 2ND-ORDER OPTIMALITY CONDITIONS; COPOSITIVE MATRICES; QUADRATIC PROGRAMMING; CONVEX MAXIMIZATION PROBLEM;
D O I
10.1007/BF01585185
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this note we specify a necessary and sufficient condition for global optimality in concave quadratic minimization problems. Using this condition, it follows that, from the perspective of worst-case complexity of concave quadratic problems, the difference between local and global optimality conditions is not as large as in general. As an essential ingredient, we here use the epsilon-subdifferential calculus via an approach of Hiriart-Urruty and Lemarechal (1990).
引用
收藏
页码:575 / 580
页数:6
相关论文
共 15 条
[1]  
BOMZE IM, 1984, J INFORMATION OPTIMI, V8, P243
[2]   NECESSARY AND SUFFICIENT CONDITIONS FOR QUADRATIC MINIMALITY [J].
BORWEIN, JM .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1982, 5 (02) :127-140
[3]  
CONTESSE L, 1980, NUMER MATH, V34, P315, DOI 10.1007/BF01396705
[4]  
Cottle R. W., 1970, P PRINC S MATH PROGR, P551
[5]  
Danninger G., 1990, Methods of Operations Research, V62, P45
[6]  
DANNINGER G, 1991, 103 U VIENN DEP STAT
[7]   ON NON-NEGATIVE FORMS IN REAL VARIABLES SOME OR ALL OF WHICH ARE NON-NEGATIVE [J].
DIANANDA, PH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN) :17-&
[8]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[9]  
Fletcher R., 1981, PRACTICAL METHODS OP
[10]   ON COPOSITIVE MATRICES [J].
HADELER, KP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 49 (FEB) :79-89