THE CONNECTION MATRIX IN MORSE-SMALE FLOWS

被引:18
作者
REINECK, JF
机构
关键词
CONLEY INDEX; CONNECTION MATRIX; CONTINUATION; MORSE-SMALE FLOW;
D O I
10.2307/2001713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a Morse-Smale flow with no periodic orbits, it is shown that the connection matrix is unique. In the case of periodic orbits, nonuniqueness can occur. We show that on 2-manifolds, with some technical assumptions, given a connection matrix for the flow, one can replace the periodic orbits with doubly-connected rest points and obtain a new flow with no periodic orbits having the given connection matrix.
引用
收藏
页码:523 / 545
页数:23
相关论文
共 12 条
[1]   MORSE-TYPE INDEX THEORY FOR FLOWS AND PERIODIC-SOLUTIONS FOR HAMILTONIAN EQUATIONS [J].
CONLEY, C ;
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :207-253
[2]   MORSE-SMALE FLOWS AND HOMOTOPY THEORY [J].
FRANKS, JM .
TOPOLOGY, 1979, 18 (03) :199-215
[4]  
FRANZOSA R, 1984, THESIS U WISCONSIN
[5]   THE CONNECTION MATRIX-THEORY FOR MORSE DECOMPOSITIONS [J].
FRANZOSA, RD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :561-592
[7]   THE CONNECTION MAP FOR ATTRACTOR-REPELLER PAIRS [J].
MCCORD, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) :195-203
[8]  
MISCHAIKOW K, CLASSIFICATION TRAVE
[9]  
MISCHAIKOW K, PREDATOR PREY GROUP
[10]  
NEWHOUSE S, 1976, THERE SIMPLE JOINING, V31