BIFURCATIONS OF LIMIT-CYCLES IN PERIODICALLY FORCED NONLINEAR-SYSTEMS - THE HARMONIC-BALANCE APPROACH

被引:41
作者
PICCARDI, C
机构
[1] Dipartimento di Elettronica e Informazione, Politec nico di Milano, 1-20133, Milano
关键词
D O I
10.1109/81.285687
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The harmonic balance approach is used to analyze tangent (saddle-node) and flip (period-doubling) bifurcations of limit cycles in periodically forced nonlinear dynamical systems. An algebraic system of equations, whose unknowns are the coefficients of a truncated Fourier series, is defined and the relationships between the bifurcations of the solutions of this algebraic system and the tangent and flip bifurcations of the limit cycles are pointed out. Some examples are presented to illustrate the method and its accuracy.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 13 条
[1]  
Arnold VI., 1983, GEOMETRICAL METHODS
[2]  
Atherton D.P., 1975, NONLINEAR CONTROL EN
[3]   A HARMONIC BALANCE APPROACH FOR CHAOS PREDICTION: CHUA'S CIRCUIT [J].
Genesio, R. ;
Tesi, A. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01) :61-79
[4]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]  
Hayashi C., 1964, NONLINEAR OSCILLATIO
[7]  
Jordan D. W., 1987, NONLINEAR ORDINARY D
[8]   CONTINUATION TECHNIQUES AND INTERACTIVE SOFTWARE FOR BIFURCATION-ANALYSIS OF ODES AND ITERATED MAPS [J].
KHIBNIK, AI ;
KUZNETSOV, YA ;
LEVITIN, VV ;
NIKOLAEV, EV .
PHYSICA D, 1993, 62 (1-4) :360-371
[9]  
KHIBNIK AI, 1990, NATO ADV SCI I C-MAT, V313, P283
[10]  
Mees A. I., 1981, DYNAMICS FEEDBACK SY