UPPER-BOUNDS ON GEOMETRIC PERMUTATIONS FOR CONVEX-SETS

被引:37
作者
WENGER, R
机构
[1] School of Computer Science, McGill University, Montreal, H3A 2K6, Quebec
关键词
D O I
10.1007/BF02187777
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let A be a family of n pairwise disjoint compact convex sets in Rd. Let {Mathematical expression}. We show that the directed lines in Rd, d ≥ 3, can be partitioned into {Mathematical expression} sets such that any two directed lines in the same set which intersect any A′⊆A generate the same ordering on A′. The directed lines in R2 can be partitioned into 12 n such sets. This bounds the number of geometric permutations on A by 1/2φd for d≥3 and by 6 n for d=2. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 9 条
[1]  
Grunbaum B., 2003, CONVEX POLYTOPES, V2nd
[2]  
Harary F., 1994, GRAPH THEORY, P11, DOI [DOI 10.21236/AD0705364, 10.1201/9780429493768, DOI 10.1201/9780429493768]
[3]   GEOMETRIC PERMUTATIONS FOR CONVEX-SETS [J].
KATCHALSKI, M ;
LEWIS, T ;
ZAKS, J .
DISCRETE MATHEMATICS, 1985, 54 (03) :271-284
[4]   GEOMETRIC PERMUTATIONS AND COMMON TRANSVERSALS [J].
KATCHALSKI, M ;
LEWIS, T ;
LIU, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :371-377
[5]  
KATCHALSKI M, IN PRESS MATH SCANDI
[6]  
KATCHALSKI M, IN PRESS DISCRETE MA
[7]  
Preparata F. P., 2012, COMPUTATIONAL GEOMET
[8]   A SEPARATION PROPERTY OF PLANE CONVEX-SETS [J].
TVERBERG, H .
MATHEMATICA SCANDINAVICA, 1979, 45 (02) :255-260
[9]   PARTITIONS OF N-SPACE BY HYPERPLANES [J].
WINDER, RO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) :811-&