ON CERTAIN INFINITE-DIMENSIONAL CANTOR SETS AND THE SCHRODINGER WAVE

被引:16
作者
ELNASCHIE, MS
机构
[1] Univ of Cambridge, Cambridge, United Kingdom
关键词
Chaos theory - Mathematical models - Mechanics - Probability - Quantum theory;
D O I
10.1016/0960-0779(93)90042-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work discusses certain infinite dimensional Cantor sets and their possible connections to the Schrodinger form of quantum mechanics.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 1935, NATURWISSENSCHAFTEN, DOI DOI 10.1007/BF01491914
[2]   The quantum mechanics of the impact process [J].
Born, M .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (12) :863-867
[3]   Multi-dimensional cantor sets in classical and quantum mechanics [J].
El Naschie, M.S. .
Chaos, solitons and fractals, 1992, 2 (02) :211-220
[4]  
El Naschie M. S., 1992, Chaos, Solitons and Fractals, V2, P437, DOI 10.1016/0960-0779(92)90018-I
[5]   COMPLEX DYNAMIC IN A 4D PEANO-HILBERT SPACE [J].
ELNASCHIE, MS .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (05) :583-594
[6]  
ELNASCHIE MS, 1992, FRANKLIN I, V330, P199
[7]  
ELNASCHIE MS, 1992, COMPUTATIONAL APPLIE, V2, P15
[8]   FRACTALS AND THE QUANTUM-THEORY OF SPACETIME [J].
NOTTALE, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (19) :5047-5117
[9]   FRACTAL SPACE-TIME - A GEOMETRIC ANALOG OF RELATIVISTIC QUANTUM-MECHANICS [J].
ORD, GN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09) :1869-1884
[10]  
Schiff L.I., 1968, QUANTUM MECH