MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM EXPERIMENTAL-DATA

被引:24
作者
BROWN, R [1 ]
RULKOV, NF [1 ]
TRACY, ER [1 ]
机构
[1] COLL WILLIAM & MARY, DEPT PHYS, WILLIAMSBURG, VA 23185 USA
关键词
D O I
10.1016/0375-9601(94)00708-W
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inverse problem of extracting evolution equations from chaotic time series measured from continuous systems is considered. The resulting equations of motion form an autonomous system of nonlinear ordinary differential equations (ODEs). The vector fields are modeled in the manner of implicit Adams integration using a basis set of polynomials that are constructed to be orthonormal on the data. The fitting method uses the Rissanen minimum description length (MDL) criterion to determine the optimal polynomial vector field. It is then demonstrated that one can synchronize the model to an experimentally measured time series. In this case synchronization is used as a nontrivial test for the validity of the models.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 18 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA [J].
BROWN, R ;
RULKOV, NF ;
TRACY, ER .
PHYSICAL REVIEW E, 1994, 49 (05) :3784-3800
[3]  
BROWN R, 1994, SYNCHRONIZATION CHAO
[4]  
BROWN R, 1993, ORTHONORMAL POLYNOMI
[5]   SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS [J].
CHOSSAT, P ;
GOLUBITSKY, M .
PHYSICA D, 1988, 32 (03) :423-436
[6]  
FORD JR, 1988, CIC148 LOS AL NAT LA
[7]   INFORMATION AND ENTROPY IN STRANGE ATTRACTORS [J].
FRASER, AM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (02) :245-262
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   FUNCTIONAL RECONSTRUCTION AND LOCAL PREDICTION OF CHAOTIC TIME-SERIES [J].
GIONA, M ;
LENTINI, F ;
CIMAGALLI, V .
PHYSICAL REVIEW A, 1991, 44 (06) :3496-3502
[10]  
JUDD K, 1994, SELECTING MODELS NON