DIFFRACTION OF AN EVANESCENT PLANE-WAVE BY A HALF PLANE

被引:24
作者
DESCHAMPS, GA
LEE, SW
GOWAN, E
FONTANA, T
机构
[1] Electromagnetics Laboratory, Department of Electrical Engineering University of Illinois at Urbana-Champaign, Urbana, IL
基金
美国国家科学基金会;
关键词
D O I
10.1016/0165-2125(79)90023-4
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A proper analytic continuation of Sommerfeld's solution is shown to provide the solution to the problem of diffraction of an evanescent plane wave. This is done by a correct extension of a parameter (detour parameter) from real to complex values. Some peculiarities of this solution are discussed. A few representative three-dimensional graphs show the field magnitude in the vicinity of the edge. © 1979.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 8 条
[1]  
Born M., 2019, PRINCIPLES OPTICS, DOI 10.1017/CBO9781139644181
[2]   EVANESCENT WAVES [J].
FELSEN, LB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (08) :751-760
[3]  
Fried B. D., 1961, The Plasma Dispersion Function, P5
[4]   GEOMETRICAL THEORY OF DIFFRACTION [J].
KELLER, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1962, 52 (02) :116-+
[5]  
LEE SW, 1976, IEEE T ANTENN PROPAG, V24, P25, DOI 10.1109/TAP.1976.1141283
[6]   UNIFORM ASYMPTOTIC THEORY OF EDGE DIFFRACTION [J].
LEWIS, RM ;
BOERSMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2291-&
[7]  
VOIGT W, 1899, KGL GES WISS NACH MP, P1
[8]   APPLICATION OF COMPLEX RAY TRACING TO SCATTERING PROBLEMS [J].
WANG, WD ;
DESCHAMPS, GA .
PROCEEDINGS OF THE IEEE, 1974, 62 (11) :1541-1551