THE MECHANICAL-PROPERTIES OF TERNARY COMPOSITES OF POLYPROPYLENE WITH INORGANIC FILLERS AND ELASTOMER INCLUSIONS

被引:88
作者
JANCAR, J
DIBENEDETTO, AT
机构
[1] Institute of Materials Science, University of Connecticut, Storrs, 06269, CT
关键词
D O I
10.1007/BF00376292
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of elastomer volume fraction and phase morphology on the elastic modulus of ternary composites polypropylene (PP)/ethylene-propylene rubber (EPR)/inorganic filler containing 30 vol% of either spherical or lamellar filler has been investigated. Phase morphology was controlled using maleated polypropylene (MPP) and/or maleated ethylene-propylene elastomer (MEPR). As revealed by SEM observations, composites of MPP/EPR/filler exhibit separation of the filler and elastomer and good adhesion between MPP and the filler, whereas composites of PP/MEPR/filler exhibit encapsulation of the filler by MEPR. Composite models were utilized to estimate upper and lower bounds for the elastic modulus of these materials, which is strongly dependent on the morphology of the ternary composite. A model based on the Kerner equation for perfect separation of the soft inclusions and rigid fillers gives a good prediction of the upper limit for relative elastic modulus as a function of filler and elastomer volume fractions. The lower limit, achieved in the case of perfect encapsulation, depends significantly on the particle shape. Good agreement was found between experimental data and lower limits predicted using the Halpin-Tsai equation for lamellar filler and the Kerner-Nielsen equation for spherical filler. In order to calculate reinforcing efficiency of the core-shell inclusions, the finite element method (ANSYS 4.4A, GT STRUDL) has been used.
引用
收藏
页码:4651 / 4658
页数:8
相关论文
共 18 条
[1]  
Broutman L. J., 1980, ANAL PERFORMANCE FIB
[2]   THEORETICAL STUDY OF EFFECT OF AN INTERFACIAL LAYER ON PROPERTIES OF COMPOSITES [J].
BROUTMAN, LJ ;
AGARWAL, BD .
POLYMER ENGINEERING AND SCIENCE, 1974, 14 (08) :581-588
[3]   BRITTLE-TOUGH TRANSITION-TEMPERATURES IN IMPACT TESTS ON RUBBER-TOUGHENED PLASTICS [J].
BUCKNALL, CB .
MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1988, 16 :209-224
[4]   THE EFFECT OF FIBER-MATRIX STRESS TRANSFER ON THE STRENGTH OF FIBER-REINFORCED COMPOSITE-MATERIALS [J].
DILANDRO, L ;
DIBENEDETTO, AT ;
GROEGER, J .
POLYMER COMPOSITES, 1988, 9 (03) :209-221
[5]   HALPIN-TSAI EQUATIONS - REVIEW [J].
HALPIN, JC ;
KARDOS, JL .
POLYMER ENGINEERING AND SCIENCE, 1976, 16 (05) :344-352
[6]   MODULI OF CRYSTALLINE POLYMERS EMPLOYING COMPOSITE THEORY [J].
HALPIN, JC ;
KARDOS, JL .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (05) :2235-&
[7]  
HALPIN JC, 1975, POLYM ENG SCI, V15, P183
[8]   FAILURE MECHANICS IN ELASTOMER TOUGHENED POLYPROPYLENE [J].
JANCAR, J ;
DIANSELMO, A ;
DIBENEDETTO, AT ;
KUCERA, J .
POLYMER, 1993, 34 (08) :1684-1694
[9]   YIELD BEHAVIOR OF PP/CACO3 AND PP/MG(OH)2 COMPOSITES .2. ENHANCED INTERFACIAL ADHESION [J].
JANCAR, J ;
KUCERA, J .
POLYMER ENGINEERING AND SCIENCE, 1990, 30 (12) :714-720
[10]  
KOLARIK J, 1990, POLYM COMMUN, V31, P201